首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
乔英志  夏倩  吴杰  刘博  朱骏 《柴油机》2016,38(3):17-21
针对基于某型柴油机改造的天然气发动机进行了性能仿真计算研究。通过建立天然气发动机仿真模型,对其结构参数进行了优化计算,并进行了增压器匹配计算。仿真计算得到了优化后的天然气发动机的性能参数,验证了该型柴油机改造为天然气发动机的可行性,并为基于柴油机改造的天然气发动机的性能提升与试验提供了理论依据。  相似文献   

2.
以WT615 CNG发动机为模拟研究对象,采用KIVA-3V软件建立了多维软件计算模型,并验证了模型的准确性。在此基础上研究了主要结构参数——燃烧室形状对燃烧特性和整机性能的影响。研究表明,直口形燃烧室的动力性、经济性能最好,更加适用于该天然气发动机,但排放性能有待提高;缩口形燃烧室的整机性能次之,碗形燃烧室的动力性和经济性则较差,后燃现象严重,不适用于天然气发动机。  相似文献   

3.
基于不同地区不同天然气组分的变化情况,对不同组分的天然气的C/H比、燃料低热值、理论空燃比进行计算与研究.运用GT-power软件建模方式,建立发动机准维燃烧模型,对不同组分的天然气进行燃烧过程分析,以便掌握发动机CO,NO等排放参数及动力性能变化规律,为研制燃烧不同组分天然气的发动机控制算法奠定基础.  相似文献   

4.
应用AVL-BOOST软件对LY12V140型天然气发动机建立工作过程计算模型,计算模拟配气定时、点火正时、压缩比、增压比、进气温度等参数对发动机燃烧过程和性能的影响,找出这些参数最佳的取值范围,从而为发动机的参数优化匹配奠定理论基础,减少开发过程中的人力、物力和财力的消耗。  相似文献   

5.
《内燃机》2016,(2)
为了提高天然气发动机的动力性及经济性,采用有限体积法进行数值计算和分析,以某型号天然气发动机为研究对象,利用一维流体力学仿真软件建立发动机的仿真模型,并通过试验数据进行验证。分析了发动机进气总管长度和直径对发动机性能的影响,并对原机的进气总管结构参数进行优化。结果表明,优化后的发动机最大扭矩提高了540.9 N·m,耗气率降低了5.456 g/(k W·h),而功率与原机基本保持一致。  相似文献   

6.
采用KIVA-3V软件耦合多目标遗传优化算法NSGA-3,开展了柴油/天然气双燃料发动机的引燃柴油喷射参数、运行参数和燃烧室结构参数的协同优化研究.将湍流火焰速度封闭模型(TFSC)与PaSR燃烧模型耦合,建立柴油/天然气双燃料发动机复合燃烧模型.结果表明:复合燃烧模型能较好地模拟柴油/天然气发动机的燃烧过程;采用KIVA3V-NSGA3程序进行了双燃料发动机运行参数、喷射参数等多目标参数的协同优化;多目标参数优化结果的数据对比分析揭示了设计参数对目标参数的影响规律;涡流比和喷射参数的变化会对燃烧室内温度、NOx和CH4的分布产生较大影响.  相似文献   

7.
《内燃机》2016,(2)
利用GT-SUITE软件建立具有快速运算功能的天然气发动机湍流火焰预测燃烧模型,结合试验数据验证了模型的计算精度,基于该模型对ETC循环排放预测、DOC匹配分析及WHTC冷循环标定策略优化进行了研究。研究结果表明,GTSUITE对天然气发动机瞬态排放的预测精度在20%以内,同时可为发动机后处理匹配及标定策略优化提供依据。  相似文献   

8.
利用CONVERGE软件基于L23/30DF型船用天然气发动机建立了双天然气喷嘴、双引燃柴油喷嘴的直喷天然气发动机的缸内燃烧过程的CFD计算模型,计算了不同的柴油和天然气喷射时刻和间隔下发动机缸内燃烧和排放过程.结果 表明:引燃柴油的喷射时刻及其与天然气喷射时刻的间隔,对直喷式天然气发动机燃烧和排放性能有重要影响.当喷...  相似文献   

9.
应用AVL—BOOST软件对WT615型天然气发动机建立工作过程计算模型,从发动机负荷特性和速度特性验证模型的准确性,并通过改变模型中的过量空气系数、点火提前角和增压比等主要工作参数对该机性能影响进行分析,从而为发动机的参数优化匹配和电控系统的脉谱标定奠定理论基础,减少开发过程中的人力、物力和财力。  相似文献   

10.
应用AVL BOOST仿真软件建立了天然气发动机的仿真模型,计算不同的运行参数对发动机热负荷的影响。主要分析不同点火提前角、空燃比、中冷后温度及增压压力时,活塞、缸盖等气缸零件热负荷的变化,为降低燃气发动机气缸零件热负荷、抑制异常燃烧、优化运行参数等各个方面的改进提供理论依据。  相似文献   

11.
为了准确预测自然吸气式压缩天然气(Compressed Natural Gas,CNG)发动机的空气流量,基于汽油机进气系统平均值模型,构建了CNG发动机的主充模型。根据CNG发动机进气系统的实际工作环境,引入了温度修正系数、体积修正系数、燃气量修正系数等参数,计算了不同工况下CNG发动机的空气流量。通过CNG发动机台架试验,测量了不同转速、不同进气歧管压力下的空气流量;对比分析了空气流量的计算值和试验值的方法,评估了模型的预测性能。结果表明,所建立的主充模型能较好的预测不同转速下空气流量随CNG发动机进气歧管压力的变化规律,空气流量的预测值与实验值的最大误差小于3%,模型具有较高的预测精度。  相似文献   

12.
本文提出了一种利用化学反应动力学模型与燃烧模型及紊流火焰传播模型建立的点火式天然气发动机双区燃烧模型 ,用该模型能较好地模拟点火式天然气发动机燃烧过程 ,并能实现爆燃预测及研究其发生的诸多因素。采用此模型对CA6 10 2汽油机改装为点火式天然气发动机 (以下简称为“CNG发动机”)进行模拟计算的结果与试验结果能较好地吻合 ,证明了该模型的可行性。  相似文献   

13.
The burning of diesel and compressed natural gas (CNG) is attractive compared to diesel fuel because of the reduction of CO2 emissions and particulate matter (PM) emissions. While soot emissions from the diesel-CNG combustion can be tested in a real-world single-cylinder engine, the soot formation characteristics cannot be tested in the same way. Therefore, to understand the mechanisms behind soot formation in diesel-CNG combustion, soot evolution must be investigated using a simulation model. In this study, the soot evolution is investigated under different CNG substitution ratios with single and split fuel injection. An AVL 5402 single-cylinder diesel engine was modified to run diesel/CNG dual-fuel to investigate the combustion and soot emissions. A new soot model using KIVA-3V R2 code and integrated with a reduced heptane/methane PAH (polycyclic aromatic hydrocarbons) mechanism was used to simulate soot behavior. For the combustion, the results show that the ignition delay gets extended, the combustion duration gets shorter and the peak pressure can be improved when CNG substitution ratio is increased both with single and split injection. Additionally, a slight increase of pressure is observed when the split injection is used. This is because the split injection is an effective strategy to change the distribution and vaporization of fuel, which results in an incremental increase in combustion efficiency and increase pressure. As the CNG substitution ratio is increased, soot emissions get drastically reduced. The reason is the equivalence ratio distribution of air-fuel becomes more homogenous and the local fuel-rich region shrinks with increasing of CNG substitution ratios. Pyrene is an important intermediate specie to generate soot particles. The results show that pyrene distribution decreases, leading to a reduced generation of soot precursors. As a result, the soot mass of CNG70 is less than the other two cases. The basic reason is the prolonged ignition delay allowed for more time for fuel−air mixing, which reduces soot mass formation.  相似文献   

14.
应用零维热力学模型和化学反应动力学模型计算并分析了二甲基醚(DME)/天然气(CNG)双燃料均质压燃(HCCI)运行工况范围,计算与试验结果相吻合.采用DME/CNG双燃料方式可以有效地扩展HCCI的运行工况范围,发动机转速为1400r/min,最大平均有效压力可达O.52MPa.在一台单缸直喷式柴油机上进行了DME/CNG双燃料HCCI燃烧过程的试验研究,结果表明,DME/CNG双燃料燃烧过程表现出明显的两阶段放热过程,随着CNG浓度增大,缸内最大爆发压力增大,燃烧始点略有推迟,燃烧第二放热峰值增大.而DME浓度对燃烧过程的影响主要通过影响第一阶段放热过程,进而影响第二阶段放热,随着DME浓度加大,第一放热峰值增大,燃烧始点提前,导致第二放热峰值增大,缸内最大爆发压力增大,主燃期缩短,当DME浓度太高时,发动机将出现爆震.  相似文献   

15.
车用发动机燃用天然气掺氢燃料的性能计算分析与研究   总被引:2,自引:1,他引:1  
为了研究天然气掺氢发动机的燃烧特性,从模拟试验的角度运用大型发动机软件建立了6缸火花点火天然气掺氢发动机的虚拟样机,并经过试验验证该模型基本准确.通过仿真计算得出,天然气发动机在掺入氢气之后,提高了燃烧速度,明显拓宽了发动机的稀燃极限.在掺入氢气30 %(体积百分比)时,发动机的综合性能指标较好;提高压缩比,指示热效率得到提高.  相似文献   

16.
研究了汽油/CNG混合燃料的发动机性能和燃烧特性。在研制汽油/CNG发动机集中电子控制单元基础上,研究了不同汽油和天然气混合比例对发动机动力性能、排放性能的影响,结果表明,随着混合燃料中天然气比例的增加,发动机的功率和转矩下降,HC和NOx排放降低,在不同负荷下应供给发动机不同比例的汽油和天然气,这样既可以获得较好的发动机动力性能,又可以实现发动机低排污特性;对燃烧特性的研究结果表明,在天然气中混入汽油有利于改善天然气的燃烧特性,混合物的燃烧特性参数随两种燃料的混合比的不同而不同,其值界于天然气和汽油之间。  相似文献   

17.
The present study was carried out to assess the possibility of using the HCNG in the commercially available CNG vehicles, as the available literature indicated the benefits of adding hydrogen to CNG in small percentages by volume, leading to improved combustion characteristics of CNG and yielding sizeable benefits, regarding improved engine performance and reduced engine emissions in automotive applications. In the present study, a commercially available CNG manifold carburation kit, commonly known as “sequential injection” in the market, is evaluated for its operation characteristics, on a Spark Ignited (SI), MPFI automotive engine, of a mass-produced passenger vehicle, converted for gas operation, using, gasoline, CNG, HCNG 10% and HCNG 18% as fuels. In the study, the following performance parameters, torque, power, thermal efficiency, brake specific energy consumption (BSEC), lambda, engine oil temperature, exhaust gas species were measured. After exhaustive engine testing, a comparison of engine performance emission characteristics for gasoline, CNG and HCNG 10% and HCNG 18% is presented. The engine performance using the optimized MAP tables demonstrated torque and power improvements for HCNG 10% and HCNG 18% in comparison to CNG. The torque benefits up-to 6% and power benefits up-to 4% were observed. The fuel energy consumption was measured to be reduced, and improvement in fuel conversion efficiency was also observed. Hydrogen substitution in CNG helped in reducing CO, HC, CO2 emissions for HCNG in comparison to CNG. Increase in NOx emission was observed for HCNG in comparison with CNG. Superior engine emission characteristics in comparison to gasoline and CNG is also demonstrated. The commercially available sequential gas manifold carburation was found to be suitable for HCNG 10% and HCNG 18%.  相似文献   

18.
This paper aims to investigate and explain the performance of the Brazilian demand for automotive fuels in the period 1970–2005. It estimates the price and income elasticities for all the available fuels in the automotive sector in the country: gasoline, compressed natural gas (CNG), ethanol and diesel. The analysis of the expenditure allocation process among these fuels is carried out through the estimation of a linear approximation of an Almost Ideal Demand System (AIDS) model. Two estimation methods were implemented: the static (through a seemingly unrelated regression) and a dynamic (through a vector error correction model). Specification tests support the use of the latter. The empirical analysis suggests a high substitutability between gasoline and ethanol; being this relation higher than the one observed between gasoline and CNG. The study shows that gasoline, ethanol and diesel are normal goods, and with the exception of ethanol, they are expenditure elastic. CNG was estimated as an inferior good.  相似文献   

19.
Compared to widening usage of CNG in commercial gasoline engines, insufficient but increasing number of studies have appeared in open literature during last decades while engine characteristics need to be quantified in exact numbers for each specific fuel converted engine. In this study, a dual sequential spark ignition engine (Honda L13A4 i-DSI) is tested separately either with gasoline or CNG at wide open throttle. This specific engine has unique features of dual sequential ignition with variable timing, asymmetrical combustion chamber, and diagonally positioned dual spark-plug. Thus, the engine led some important engine technologies of VTEC and VVT. Tests are performed by varying the engine speed from 1500 rpm to 4000 rpm with an increment of 500 rpm. The engine’s maximum torque speed of 2800 rpm is also tested. For gasoline and CNG fuels, engine performance (brake torque, brake power, brake specific fuel consumption, brake mean effective pressure), emissions (O2, CO2, CO, HC, NOx, and lambda), and the exhaust gas temperature are evaluated. In addition, numerical engine analyses are performed by constructing a 1-D model for the entire test rig and the engine by using Ricardo-Wave software. In the 1-D engine model, same test parameters are analyzed, and same test outputs are calculated. Thus, the test and the 1-D engine model are employed to quantify the effects of gasoline and CNG fuels on the engine performance and emissions for a unique engine. In general, all test and model results show similar and close trends. Results for the tested commercial engine show that CNG operation decreases the brake torque (12.7%), the brake power (12.4%), the brake mean effective pressure (12.8%), the brake specific fuel consumption (16.5%), the CO2 emission (12.1%), the CO emission (89.7%). The HC emission for CNG is much lower than gasoline. The O2 emission for CNG is approximately 55.4% higher than gasoline. The NOx emission for CNG at high speeds is higher than gasoline. The variation percentages are the averages of the considered speed range from 1500 rpm to 4000 rpm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号