首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article focuses on the robust fault tolerant control (FTC) problem for a class of Lipschitz nonlinear multi-agent systems(MASs) subject to sensor faults. Firstly, sensor faults are transformed into actuator faults via introducing a new intermediate auxiliary state variable, and a distributed adaptive fault estimation observer is designed to estimate the state information and the concerned faults by using the relative output estimation error. Then, the sufficient existence conditions for the observer to satisfy the robust performance index are given. Thirdly, based on the results of observer design, a new design method of dynamic output feedback controller is proposed to implement consensus of MASs and ensure the desired disturbance rejection performance. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

2.
提出一类不依赖于模型的状态观测器,通过分析其根轨迹和极点要求配置合适的参数,该观测器本身是一个能提取高阶微分的高阶微分器.基于Lyapunov稳定性理论设计了使闭环系统渐近稳定,对模型变化和扰动具有鲁棒性的神经网络自适应控制器.该控制器不仅考虑了闭环系统的输出和设定输入误差的微分,而且考虑了误差的高阶微分,从而提高了控制品质.最后通过仿真例子验证了所提出理论的正确性.  相似文献   

3.
In this paper,a new fuzzy adaptive control approach is developed for a class of SISO uncertain pure-feedback nonlinear systems with immeasurable states.Fuzzy logic systems are utilized to approximate the unknown nonlinear functions;and the filtered signals are introduced to circumvent algebraic loop systems encountered in the implementation of the controller,and a fuzzy state adaptive observer is designed to estimate the immeasurable states.By combining the adaptive backstepping technique,an adaptive fuzzy output feedback control scheme is developed.It is proven that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are semi-globally uniformly ultimately bounded(SGUUB),and the observer and tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters.Simulation studies are included to illustrate the efectiveness of the proposed approach.  相似文献   

4.
Nonlinear model predictive controllers determine appropriate control actions by solving an on-line optimization problem. A nonlinear process model is utilized for on-line prediction, making such algorithms particularly appropriate for the control of chemical reactors. The algorithms presented in this paper incorporates an extended Kalman filter, which allows operations around unstable steady-state points. The paper proposes a formalization of the procedure for tuning the several parameters of the control algorithm. This is accomplished by specifying time-domain performance criteria and using an interactive multi-objective optimization package off-line to determine parameters values that satisfy these criteria. Three reactor examples are used to demonstrate the effectiveness of the proposed on-line algorithm and off-line tuning procedure.  相似文献   

5.
Vehicle state estimation during anti-lock braking is considered. A novel nonlinear observer based on a vehicle dynamics model and a simplified Pacejka tire model is introduced in order to provide estimates of longitudinal and lateral vehicle velocities and the tire-road friction coefficient for vehicle safety control systems, specifically anti-lock braking control. The approach differs from previous work on vehicle state estimation in two main respects. The first is the introduction of a switched nonlinear observer in order to deal with the fact that in some driving situations the information provided by the sensor is not sufficient to carry out state estimation (i.e., not all states are observable). This is shown through an observability analysis. The second contribution is the introduction of tire-road friction estimation depending on vehicle longitudinal motion. Stability properties of the observer are analyzed using a Lyapunov function based method. Practical applicability of the proposed nonlinear observer is shown by means of experimental results.  相似文献   

6.
针对单输入单输出不确定非线性系统提出了一种自适应鲁棒模糊控制算法.该算法通过设计观测器来估计系统的状态向量,因此不要求假设系统的状态向量是可测的.在这个算法中,主要的假设为最优逼近参数向量与标称参数向量之差的范数和逼近误差的界限是未知的.通过只对未知界限估计的调节,该算法减轻了在线计算量并且提高了系统的鲁棒性.所设计的自适应鲁棒模糊控制算法保证了闭环系统的所有信号是一致有界的并且跟踪误差估计收敛到一个小的零邻域内.仿真例子证实了所提方法的可行性.  相似文献   

7.
对感应电机直接转矩控制系统中存在的干扰,本文结合扩张状态观测器(ESO)和有限时间控制(FTC)提出一种复合控制方法来提高系统的抗干扰能力.首先采用扩张状态观测器估算系统的扰动,用此观测值作为前馈量补偿到输入端;然后运用连续有限时间控制方法设计系统前向通道中的反馈控制器.文中对控制器的稳定性进行了证明.与传统的PI控制以及P+ESO控制方法进行仿真与实验结果比较,验证了方法的有效性.  相似文献   

8.
基于观测器的非线性不确定离散系统的鲁棒模糊控制   总被引:1,自引:0,他引:1  
研究了参数不确定及状态变量难以获取的非线性系统的鲁棒模糊控制问题.采用离散模糊T-S模型对离散非线性系统进行建模并建立了模糊观测器.用矩阵不等式的形式推导出了在Lyapunov意义下鲁棒镇定的充分条件.利用线性矩阵不等式(LMI)导出了模糊反馈增益和模糊观测器增益存在的充分条件.  相似文献   

9.
The problem of designing a dynamic measurement processor for the on-line estimation of the state of a multi-input multi-output nonlinear plant is addressed. The plant can be either observable or detectable, encompassing a broad range of cases in process systems engineering. On the basis of the structure of a suitable property of robust nonlinear estimability, an estimator is built and its convergence studied, yielding sufficient conditions for robust convergence, a systematic construction, and a tractable gain tuning procedure. The estimability property has a verifiable test, and the execution of the tuning procedure, as well as the interpretation of its convergence features can be achieved within a conventional control framework for linear single-input controllers or single-output filters. The estimation of a continuous polymer reactor is considered as an application example.  相似文献   

10.
11.
基于滑模与自适应观测器的感应电机非线性控制新策略   总被引:1,自引:1,他引:1  
提出一种结合滑模变结构和自适应观测技术的感应电机非线性控制新方法. 以定子电流与定子磁链为状态变量建立感应电机模型, 采用非线性分析方法建立转矩与磁链误差方程, 使用自适应滑模技术设计转矩与磁链控制器, 推导出定子电压控制量. 基于模型参考技术设计自适应观测器, 向控制器提供准确的转速辨识与磁链观测值,并给出了控制系统的稳定性证明. 该方法具有转矩脉动小、定子磁链畸变不明显的优点, 低速时也具有良好的控制性能, 且对参数与负载变化有较强的鲁棒性. 仿真与实验结果证明了该控制策略的正确性与有效性.  相似文献   

12.
In this paper, the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle (HEV) applications is addressed, Because motor parameter variations in HEV applications are larger than in industrial drive system, the conventional field-oriented control (FOC) provides poor performance. Therefore, a new robust PI-based extension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed in order to improve the overall performance. Simulation results show that the proposed sensorless torque control scheme is robust with respect to motor parameter variations and loading disturbances. In addition, the operating flux of the motor is chosen optimally to minimize the consumption of electric energy, which results in a significant reduction in energy losses shown by simulations.  相似文献   

13.
In this paper, the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle (HEV) applications is addressed. Because motor parameter variations in HEV applications are larger than in industrial drive system, the conventional field-oriented control (FOC) provides poor performance. Therefore, a new robust PI-based extension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed in order to improve the overall performance. Simulation results show that the proposed sensorless torque control scheme is robust with respect to motor parameter variations and loading disturbances. In addition, the operating flux of the motor is chosen optimally to minimize the consumption of electric energy, which results in a significant reduction in energy losses shown by simulations.  相似文献   

14.
This paper presents a nonlinear adaptive control (NAC) scheme for the speed regulation of a permanent magnet synchronous motor (PMSM) based on perturbation estimation and feedback linearizing control. All PMSM system’s unknown nonlinearities, parameter uncertainties, and external disturbances including unknown time-varying load torque disturbance, are defined as lumped perturbation terms, which are estimated by designing perturbation observers. The estimates are used to adaptively compensate the real perturbations and achieve adaptive feedback linearizing control of the original nonlinear system. The proposed control scheme does not require accurate system model and full state feedback. Stability of the close-loop system with proposed NAC is investigated via Lyapunov theory, and the effectiveness of proposed NAC scheme is verified through both simulation and experimental studies. Both simulation and experimental results show that the proposed NAC scheme can provide less regulation error in speed tracking, better dynamic performance and robustness against parameter uncertainties and load torque disturbance, compared with conventional vector control and load torque estimated based control.  相似文献   

15.
An observer-based perturbation extremum seeking control is proposed for a direct-contact membrane distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D advection-diffusion equation model which has pump flow rates as process inputs. The objective of the controller is to optimise the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analysed, and simulations based on real DCMD process parameters for each control input are provided.  相似文献   

16.
In this paper, we propose a discrete‐time nonlinear sliding mode observer for state and unknown input estimations of a class of single‐input/single‐output nonlinear uncertain systems. The uncertainties are characterized by a state‐dependent vector and a scalar disturbance/unknown input. The discrete‐time model is derived through Taylor series expansion together with nonlinear state transformation. A design methodology that combines the discrete‐time sliding mode (DSM) and a nonlinear observer design is adopted, and a strategy is developed to guarantee the convergence of the estimation error to a bound within the specified boundary layer. A relation between sliding mode gain and boundary layer is established for the existence of DSM, and the estimation is made robust to external disturbances and uncertainties. The unknown input or disturbance can also be estimated through the sliding mode. The conditions for the asymptotical stability of the estimation error are analysed. Application to a bioreactor is given and the simulation results demonstrate the effectiveness of the proposed scheme. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a methodological approach to design observer-based adaptive sliding mode control for a class of nonlinear uncertain state-delayed systems with immeasurable states. A novel switching surface is proposed and a state observer is employed to reconstruct the sliding mode control action. The proposed method does not need a priori knowledge of upper bounds on the norm of the uncertainties, but estimates them by using the adaptation technique so that the reaching condition can be satisfied. Based on Lyapunov stability theorem and linear matrix inequality (LMI) technique, the stability of the overall closed-loop nonlinear uncertain state-delayed system is guaranteed for the proposed control scheme under certain conditions. Furthermore, the state observer and control law can be constructed from the positive-definite solutions of two LMIs, and the design technique is simple and efficient. The validity of the proposed control methodology is demonstrated by simulation results. Recommended by Editorial Board member Ju Hyun Park under the direction of Editor Young IL Lee. Ming-Chang Pai received the M.S. and Ph.D. degrees in mechanical engineering in 1994 and 1998 from Pennsylvania State University, State College, P.A.. He is currently an Associate Professor in the Department of Automation Engineering at Nan Kai University of Technology. His research interests are in mechatronics, robots, robust control and nonlinear control.  相似文献   

18.
A minimum-time torque control strategy for permanent-magnet AC motor drives is presented. The proposed technique neither requires the solution of a HJB-type equation, which would be practically unfeasible, nor uses Pontryagin's maximum principle. Instead, the solution is obtained by an ad hoc procedure based on the computation of reachability and controllability sets. In principle, the optimal control strategy can be carried out by iteratively solving a fourth-degree polynomial equation. For its efficient implementation, an algorithm based on Sturm sequences is suggested. The sequence of online operations required by the algorithm for a given tolerance on the optimal time is illustrated. The method has been tested on a laboratory prototype. Experimental results show the effectiveness of the technique.  相似文献   

19.
The fault estimation for a class of nonlinear systems with Lipschitzian nonlinearities and faults is studied in this article. An integrated estimation observer that covers the robust estimation observer (REO) and adaptive estimation observer (AEO) is proposed to improve the accuracy of fault estimation. Compared with the traditional AEO, the designed observer does not involve the output derivatives and can be more suitable for practical applications. Furthermore, based on the designed observer, the coupling term emerging in the obtained error dynamics can be eliminated reasonably and less conservative stability conditions for the error dynamics can be obtained, whereas the case is hard to be achieved based on the existing intermediate estimator approach in the literature. Compared with the traditional REO and AEO, the fault can be estimated with a good accuracy by using the proposed integrated estimation observer. Numerical examples test the effectiveness and advantages of the proposed method.  相似文献   

20.
This paper presents a fault-tolerant control (FTC) scheme for nonlinear systems which are connected in a networked control system. The nonlinear system is first transformed into two subsystems such that the unobservable part is affected by a fault and the observable part is unaffected. An observer is then designed which gives state estimates using a Luenberger observer and also estimates unknown parameter of the system; this helps in fault estimation. The FTC is applied in the presence of sampling due to the presence of a network in the loop. The controller gain is obtained using linear-quadratic regulator technique. The methodology is applied on a mechatronic system and the results show satisfactory performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号