共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown previously that non-stationary signals recorded in a static multi-path environment can often be recovered by simultaneously decorrelating varying second order statistics. As typical sources are often moving, however, the multi-path channel is not static. We present here an on-line gradient algorithm with adaptive step size in the frequency domain based on second derivatives, which we refer to as multiple adaptive decorrelation (MAD). We compared the separation performance of the proposed algorithm to its off-line counterpart and to another decorrelation based on-line algorithm. 相似文献
2.
This paper considers mixing matrix estimation for underdetermined blind source separation. First, we propose an effective detection algorithm to identify single source points where only one source occurs. The detection algorithm finds single source points by utilizing the time–frequency coefficients of mixed signals and the complex conjugates of the coefficients. Then, a method based on probability density is proposed in order to find more reliable single source points and cluster them. Finally, the mixing matrix is obtained through re-selecting and clustering single source points. The experimental results indicate that the algorithm can accurately estimate the mixing matrix when there are fewer sensors than sources. 相似文献
3.
针对传统盲分离混合矩阵估计鲁棒性差、易受初始值影响、精度不高等问题,该文将人工蜂群算法(ABC)用到盲分离中,结合稀疏信号混合矩阵估计的特点,提出一种基于不同搜索策略和编码方式的两阶段蜂群算法的混合矩阵估计方法,通过新的蜜蜂搜索行为和子蜂群之间的协同作业,明显加快了算法的收敛速度,提高了混合矩阵的估计精度。仿真实验表明,该方法在源个数较多、弱稀疏、低信噪比的情况下仍然可以很好地估计混合矩阵。相比已有方法,该方法不仅具有很强的鲁棒性和很高的估计精度,而且不需要太大的计算量。 相似文献
4.
在进行欠定盲分离时,特别是对于源信号数目及混合矩阵动态变化的情况,常规的欠定盲分离及源数估计方法不能对源信号数目的变化时刻做出判断,因此很难实现动态变化的源信号数目实时和准确的估计。针对这个问题,提出了一种动态变化混叠模型下欠定盲源分离中的源数估计方法。首先,建立动态变化混叠情形下盲源分离的数学模型及动态标识矩阵。其次,基于构建的动态标识矩阵统计和判断动态源信号数目的变化情况。最后,通过分段时间内多维观测矢量采样点聚类区间局部峰值统计,实现动态变化混叠模型下盲源分离中的源信号数目的有效估计。仿真结果表明,该方法能有效实现动态变化混叠模型下欠定盲源分离中的源数估计,并且信号估计效果良好。 相似文献
5.
6.
Frdric Vrins Dinh-Tuan Pham Michel Verleysen 《IEEE transactions on information theory / Professional Technical Group on Information Theory》2007,53(3):1030-1042
In this paper, both non-mixing and mixing local minima of the entropy are analyzed from the viewpoint of blind source separation (BSS); they correspond respectively to acceptable and spurious solutions of the BSS problem. The contribution of this work is twofold. First, a Taylor development is used to show that the exact output entropy cost function has a non-mixing minimum when this output is proportional to any of the non-Gaussian sources, and not only when the output is proportional to the lowest entropic source. Second, in order to prove that mixing entropy minima exist when the source densities are strongly multimodal, an entropy approximator is proposed. The latter has the major advantage that an error bound can be provided. Even if this approximator (and the associated bound) is used here in the BSS context, it can be applied for estimating the entropy of any random variable with multimodal density 相似文献
7.
针对欠定盲源分离中混合矩阵估计精度不佳的问题,本文提出了一种结合带噪声的基于密度的空间聚类(combining density-based spatial clustering of application with noise, DBSCAN)和概率密度估计的混合矩阵估计算法。首先,通过向量转换方式获得单声源时频点检测准则,并基于此准则从混合信号中检测出单声源点。其次,利用基于密度的空间聚类算法对单声源点进行聚类,由此估计出声源个数以及各类别所属的单声源点。再次,利用概率密度估计获得各类别的聚类中心,并构成混合矩阵。所提混合矩阵估计方法不需要提前设定声源个数,并且避免了由于数据分布不均所造成的聚类效果差的问题。最后,采用压缩感知技术实现源信号恢复,从而从混合信号中分离出各个声源信号。实验结果表明,本文所提的混合矩阵估计方法在声源个数未知的情况下,能够准确估计出混合矩阵;并且分离出的信号具有较高的质量。 相似文献
8.
9.
10.
一种信号源盲分离的神经网络算法 总被引:6,自引:0,他引:6
本文提出了一种新的盲信号分离的神经网络算法。神经网络的第一层使用奇异值分解(SVD)方法对观测信号进行预白化处理。在传感器的数目不少于源信号的情况下,预白化处理能够估计出源信号的数目,同时压缩掉冗余信息。神经网络的第二层是分离层。分离层的权值矩阵应该是正交矩阵。本文应用一个正交严格受限(SOC)算法调整分离网络的权值。其中,用恢复信号的四阶互累积量的平方构造代价函数。仿真实验验证了算法的有效性。 相似文献
11.
混合语音信号的盲分离 总被引:1,自引:0,他引:1
重点研究了卷积混合语音信号的盲分离方法。语音信号是非平稳信号,但是它在短时间上具有平稳性。因此,本文对语音信号进行加窗傅立叶变换(FFT)将卷积混合问题转换为频域上每个频点的瞬时性BSS(blind source separation)问题,采用定点(fixed—point)ICA(independent component analysis)算法对混合语音信号进行了分离,并用matlab进行了仿真。 相似文献
12.
针对盲源分离问题,提出一种基于接收信号不同延时下自相关矩阵组的快速联合对角化算法(FJD).采用乘性迭代机制求解表征联合对角化近似程度的F-范数代价函数.对代价函数的合理近似及巧妙求解,是算法快速有效的核心原因.每步迭代得到的严格对角占优更新矩阵,保证联合对角化器严格可逆,防止收敛到平凡解.算法具有不需要预白化操作,不限定待对角化目标矩阵的正定性,并能处理复值数据等诸多优点,具有极广的适用性.详细的计算复杂度分析说明了算法的高效性及易操作性.仿真结果表明,FJD算法收敛速度快,性能良好,能有效地解决盲源分离问题. 相似文献
13.
传感器采集到的信号是由多目标源、环境噪声等经多途径卷积混合的形武.为有效地去除环境因素如干扰、传输延迟等的影响,提出一种新的盲信号分离方法.利用非平稳信号的多重去相关和最小二乘准则来估计混合矩阵A或解混矩阵W以及信号和噪声功率.实验结果表明,该算法具有良好的分离效果. 相似文献
14.
针对MIMO雷达的信号特点,采用了一种多角度的雷达侦察方法,从不同的方位获取同一部雷达的独立信号样本。并在此基础上,运用主分量分析方法估计信号波形个数,运用独立分量分析的盲源分离方法分离出MIMO雷达信号的各个正交分量,最终以正交频分线性调频信号为例,在信噪比为0 dB的情况下对该信号进行了仿真分析,其结果验证了该方法的有效性。 相似文献
15.
16.
17.
18.
将秩一非负矩阵分解应用于盲源分离问题,把基于欧式距离的目标函数转化成二次函数的形式;施加稀疏性约束和正交性约束保证信号可分离性;利用二次函数的性质分别推得混合矩阵和源信号的迭代公式,从而得到一种基于秩一分解的快速NMF盲源分离算法(NMF-R1)。分析得到一次迭代更新NMF-R1算法比传统NMF盲源分离算法(NMF-BM)所需乘法次数少约30%,NMF-R1算法无矩阵求逆运算,NMF-BM算法还需2次矩阵求逆运算。图像信号的超定和欠定盲源分离仿真结果表明,NMF-R1算法都能分离出源信号, NMF-BM算法只能分离超定混合信号;NMF-R1算法与NMF-BM算法比,分离性能好、收敛速度快。 相似文献
19.
盲信号分离的现状和展望 总被引:11,自引:0,他引:11
盲信号分离是近几年才发展起来,用于解决从混合观测数据中分离源信号的一门新技术,已在许多领域获得了广泛应用。本文介绍了盲分离的主要理论和两大类实现方法——独立分量分析和非线性主分量分析,并在此基础上介绍了实现盲信号分离的不同算法、在非线性混合情况下的算法以及盲信号分离将来的发展方向。 相似文献