首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the effects of peripheral nerve grafts, embryonic spinal cord transplants and brain-derived neurotrophic factor (BDNF) on the survival and axon regeneration of adult rat spinal motor neurons undergoing retrograde degeneration after ventral root avulsion. Following implantation into the dorsolateral funiculus of the injured spinal cord segment, neither a peripheral nerve graft nor a combination of peripheral nerve graft with embryonic spinal cord transplant could prevent the retrograde motor neuron degeneration induced by ventral root avulsion. However, intrathecal infusion of BDNF promoted long-term survival of the lesioned motor neurons and induced abundant motor axon regeneration from the avulsion zone along the spinal cord surface towards the BDNF source. A combination of ventral root reconstitution and BDNF treatment might therefore be a promising means for the support of both motor neuron survival and guided motor axon regeneration after ventral root lesions.  相似文献   

2.
The ability of solid pieces of transplanted human embryonic spinal cord to survive, grow, and integrate with adult rat host spinal cord tissue was investigated. Unilateral cavities were surgically created at vertebral level T12-T13 in 10 athymic nude rats and 5 regular Sprague-Dawley rats. Seven of the athymic rats acutely received a human spinal cord graft, while the remaining 8 rats served as controls, with cavities alone. After 6 months the morphological outcome was evaluated with cresyl violet and with immunohistochemistry using antibodies toward human-specific neurofilament (hNF), human-specific Thy-1 (Thy-1), neurofilament, glial fibrillary acidic protein, serotonin (5-HT), and tyrosine hydroxylase (TH). The in situ morphology of the human embryonic spinal cord was also investigated and compared with grafts that were six months older. Solid human embryonic spinal cord grafts showed a 100% survival rate, grew to fill the volume of the cavity in a noninvasive manner, and expressed human specific antigens 6 months postgrafting. Thy-1 immunoreactivity (IR) was demonstrated up to 8 mm rostral to the graft suggestive of graft-derived fiber outgrowth. hNF-IR fibers and 5-HT- and TH-IR fibers traversed the graft-host border for a few hundred micrometers, respectively. Finally, our findings suggest that grafted solid pieces of human embryonic spinal cord minimize cystic deformations seen in the adult rat spinal cord with a unilateral cavity.  相似文献   

3.
Most studies investigating early fetal CNS graft-host interactions and host immune responses have been performed using intracerebral transplantation paradigms. The purpose of this study was to establish the early developmental dynamics of fetal graft integration with the injured host spinal cord and to determine whether fetal allografts in this environment are subject to rejection. ACI rat fetal spinal cord (FSC) tissue was grafted into acute lesion cavities of adult WF rat spinal cords. Graft development and/or rejection was followed from 1 to 45 days posttransplantation with morphometric, histological, and immunocytochemical methods. We determined that all FSC grafts in acute resection lesions of the adult rat spinal cord undergo an early substantial cellular attrition, but following favorable attachment to healthy host tissue margins, they rebound and grow to fill the lesion cavity by approximately 45 days. We also determined that FSC allografts into nonimmunosuppressed adult recipients are consistently rejected, but only after an early period of growth and maturation. The onset of rejection is characterized by extensive cellular infiltration coincidental with graft and host MHC antigen expression. The implications of delayed graft development and graft-host integration are discussed relative to interconnectivity and long-term potential for graft-derived benefits. The observed rejection response was characteristic of first-order allograft rejection and underscores a lack of immunological privilege in the microenvironment of the injured spinal cord.  相似文献   

4.
The present study evaluated the growth potential and differentiation of human fetal spinal cord (FSC) tissue in the injured adult rat spinal cord under different lesion and grafting conditions. Donor tissue at 6-9 weeks of gestational age was obtained through elective abortions and transplanted either immediately into acute resection (solid grafts) or into chronic contusion (suspension and solid grafts) lesions (i.e., 14-40 days after injury) in the thoracic spinal cord. The xenografts were then examined either histologically in plastic sections or immunocytochemically 1-3 months postgrafting. Intraspinal grafts in acute lesions demonstrated an 83% survival rate and developed as well-circumscribed nodules that were predominantly composed of immature astrocytes. Solid-piece grafts in chronic contusion lesions exhibited a 92% survival rate and also developed as nodular masses. These grafts, however, contained many immature neurons 2 months postgrafting. Suspension grafts in chronic contusion lesions had an 85% survival rate and expanded in a nonrestrictive, diffuse pattern. These transplants demonstrated large neuronally rich areas of neural parenchyma. Extensive neuritic outgrowth could also be seen extending from these grafts into the surrounding host spinal cord. These findings show that human FSC tissue reliably survives and differentiates in both acute and chronic lesions. However, both the lesion environment and the grafting techniques can greatly influence the pattern of differentiation and degree of host-graft integration achieved.  相似文献   

5.
Our research group is studying, in the primate (marmoset), the conditions of an anatomical and functional reconstruction of the spinal cord and of its motor connections, following a focal spinal lesion. In this attempt to repair the damaged neuronal circuitry, we used long segments of autologous peripheral nerves joining the injured cervical spinal cord to an aneural region of the denervated biceps brachialis muscle (7 marmosets) or to the musculocutaneous nerve (6 marmosets). After retrograde tracing (HRP) and histochemical studies of the muscle, we found that a great number of neurons, located mostly in the ventral part of the grey matter extended axons into the peripheral nerve graft. Some of these labelled neurons were motoneurons, which could established functionnal neuromuscular junctions. The muscle regeneration was effective but slower than already known in rat studies.  相似文献   

6.
Fetal spinal cord tissue grafts have been advocated as a possible repair strategy for spinal cord injury. In the present study, we used intraocular spinal cord grafts to model the interactions which may occur between fetal and adult spinal cord after making such a graft and to study to which extent functional connections can be expected to occur between the host and graft tissue. We first grafted fetal spinal cord to the anterior chamber of the eye where it was allowed to mature. A second piece of fetal spinal cord was then sequentially grafted in contact with the first graft. Electrophysiological recordings made from the older graft while electrically stimulating the younger graft provided evidence for an excitatory innervation from the younger spinal cord graft to the mature spinal cord which appeared to be glutamatergic. However, we only rarely found excitatory inputs from the first, mature spinal cord graft to the younger graft. Fiber connections between the two spinal cord grafts were verified by retrograde tracing and neurofilament immunohistochemistry. In no case was a trophic influence on graft volume observed between spinal cord grafts regardless of whether the transplantations were performed sequentially or at the same time. Even the introduction of a second graft to immature spinal cord tissue was ineffective. In contrast, we found a marked trophic, neuron-rescuing effect of spinal cord grafts upon cografts of fetal dorsal root ganglia. This latter observation is consistent with the hypothesis that spinal cord tissue can exert a trophic effect on developing sensory ganglia and demonstrates that many sensory neurons can survive in the presence of a central target and in the absence of the appropriate peripheral target. These intraocular experiments predict that fetal spinal cord grafted to the injured adult spinal cord may develop effective excitatory inputs with the host, while host-to-graft inputs may develop to a considerably smaller extent. Our results also suggest that the adult spinal cord does not exert marked trophic effects on growth of fetal spinal cord, while it does exert a trophic influence on central projections of dorsal root ganglia.  相似文献   

7.
The contribution of chondroitin sulfate proteoglycan (CSPG) in the suppression of axonal growth in rat spinal cord has been examined by means of an in vitro bioassay in which regenerating neurons are grown on tissue section substrata. Dissociated embryonic chick dorsal root ganglionic neurons were grown on normal and injured adult spinal cord tissue sections treated with chondroitinases. Neuritic growth on normal spinal cord tissue was meager. However, both the percentage of neurons with neurites and the average neurite length were substantially greater on sections treated with chondroitinase ABC. Enzymes that specifically degraded dermatan sulfate or hyaluronan were ineffective. Neuritic growth was significantly greater on injured (compared to normal) spinal cord and a further dramatic increase resulted from chondroitinase ABC treatment. Neurites grew equally within white and gray matter regions after chondroitinase treatment. Observed increases in neurite outgrowth on chondroitinase-treated tissues were largely inhibited in the presence of function-blocking laminin antibodies. These findings indicate that inhibitory CSPG is widely distributed and predominant in both normal and injured spinal cord tissues. Additionally, inhibitory CSPG is implicated in negating the potential stimulatory effects of laminin that might otherwise support spinal cord regeneration.  相似文献   

8.
The electrophysiological integrity of the adult rat spinal cord was assessed at the lumbar, lower cervical and cortical levels after the animals sustained a severe contusion injury at the mid-thoracic level (T8) and received either carbon filament cultured with fetal spinal cord tissue implants, fetal tissue implants, or carbon filament implants alone. Somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) were recorded from all animal groups at the end of the 8-week survival period. The results of this study demonstrate that the spinal cord injured animals that received carbon filament cultured with fetal spinal cord tissue implants had the highest degree of electrophysiological recovery, indicating that this combination plays an important role in promoting recovery after injury.  相似文献   

9.
The object of this experimental study was to investigate the influence of low-energy He-Ne laser on the motor nerve cells of the spinal cord. The experimental study included as follws: (1) Four rabbits were used in this experiment. The L5-6 spinal cord segment was irradiated by He-Ne laser percutaneously, the nerve velocity of the comon peroneal nerve was measured in order to determine the function of the spinal motor nerve cells when the peripheral nerve was intact. (2) The common peroneal nerve was transected on one side wothout repair, two weeks after laser irradiation, the grey mater of the spinal cord of L5-6 segment was procured for electronic microscopic examination. (3) The common peroneal nerve on the contralateral side was transected and followed by end-to-end anastomosis, and laser irradiation was done on the same spinal cord segment. Two weeks after irradiation, the nerve velocity of the common peroneal nerve and the toe expanding test were investigated. The results were: (1) the He-Ne laser can influence the spinal motor nerve cells function as expressed by latent rate when the peripherial nerve is intact. i.e. the nerve velocity is slower than mormal, and the amplitude is markedly decreared. (2) the change of the microstructure of the spinal motor nerve cells is comparatively slight in the 10 and 15 minutes groups. (3) the recovery of the nerve velocity and the toe expansion are more earlier in the 15 min. group. In short, the low-energy He-Ne laser can influence the function of the spinal motor nerve cells.  相似文献   

10.
In an attempt at repairing the injured spinal cord of adult mammals (rat, dog and marmoset) and its damaged muscular connections, we are currently using: 1) peripheral nerve autografts (PNG), containing Schwann cells, to trigger and direct axonal regrowth from host and/or transplanted motoneurons towards denervated muscular targets; 2) foetal spinal cord transplants to replace lost neurons. In adult rats and marmosets, a PNG bridge was used to joint the injured cervical spinal cord to a denervated skeletal muscle (longissimus atlantis [rat] or biceps brachii [rat and marmoset]). The spinal lesion was obtained by the implantation procedure of the PNG. After a post-operative delay ranging from 2 to 22 months, the animals were checked electrophysiologically for functional muscular reconnection and processed for a morphological study including retrograde axonal tracing (HRP, Fast Blue, True Blue), histochemistry (AChE, ATPase), immunocytochemistry (ChAT) and EM. It was thus demonstrated that host motoneurons of the cervical enlargement could extend axons all the way through the PNG bridge as: a) in anaesthetized animals, contraction of the reconnected muscle could be obtained by electrical stimulation of the grafted nerve; b) the retrograde axonal tracing studies indicated that a great number of host cervical neurons extended axons into the PNG bridge up to the muscle; c) many of them were assumed to be motoneurons (double labelling with True Blue and an antibody against ChAT); and even alpha-motoneurons (type C axosomatic synapses in HRP labelled neurons seen in EM in the rat); d) numerous ectopic endplates were seen around the intramuscular tip of the PNG. In larger (cavitation) spinal lesions (rat), foetal motoneurons contained in E14 spinal cord transplants could similarly grow axons through PNG bridges up to the reconnected muscle. Taking all these data into account, it can be concluded that neural transplants are interesting tools for evaluating both the plasticity and the repair capacities of the mammalian spinal cord and of its muscular connections.  相似文献   

11.
This review focuses on the regrowth of respiratory pathways after nerve grafting within the central nervous system of the adult rat. After a general presentation of the background and of the grafting procedure, we summarize our nerve grafting results of while it is now well established that severed axons of adult central neurons can regenerate within segments of peripheral nerve partially implanted within the brain or spinal cord, the functional properties of the regenerating neurons remain generally unknown. With a view to assessing the extent to which the functional capacities of central neurons can be maintained after axonal regeneration, we have carried out experiments on central respiratory neurons which are a good example of a highly organized neuronal network with characteristic patterns of spontaneous discharge. We have shown that axonal regrowth of central respiratory neurons was successfully induced in blind-ended medullary and spinal autografts implanted respectively within the respiratory centers of the medulla oblongata and within the cervical spinal cord at the level of descending respiratory pathways. The grafts consisted of true "supplementary nerve" in which normal afferent and efferent respiratory pathways were confirmed by recording respiratory unitary discharges from teased fibers within the grafts. The efferent discharges reflected the activity of central respiratory neurons that had regenerated axons within the grafts: these neurons manifested spontaneous activity and normal responsiveness to respiratory stimuli that resemble those of normal respiratory cells. In order to evaluate the possibility of experimental nerve banking, the feasibility of using short-term and long-term stored nerves as potential spinal nerve grafts was established using in vitro pre-degenerated nerve and cryopreserved nerve grafts after assessment of Schwann cell viability. The extent of respiratory reinnervation of the different grafts (medullary, spinal and stored nerve grafts) was compared. The discussion focuses on the main data and the strategy for future nerve grafting is evoked: functional characteristics of regenerating respiratory axons, extent of graft reinnervation, functional schwann cell survey within stored/grafted nerve and post-traumatic grafting.  相似文献   

12.
Advances in the purification and expansion of Schwann cells (SCs) from adult human peripheral nerve, together with biomaterials development, have made the construction of unique grafts with defined properties possible. We have utilized PAN/PVC guidance channels to form solid human SC grafts which can be transplanted either with or without the channel. We studied the ability of grafts placed with and without channels to support regeneration and to influence functional recovery; characteristics of the graft and host/graft interface were also compared. The T9-T10 spinal cord of nude rats was resected and a graft was placed across the gap; methylprednisolone was delivered acutely to decrease secondary injury. Channels minimized the immigration of connective tissue into grafts but contributed to some necrotic tissue loss, especially in the distal spinal cord. Grafts without channels contained more myelinated axons (x = 2129 +/- 785) vs (x = 1442 +/- 514) and were larger in cross-sectional area ( x = 1.53 +/- 0.24 mm2) vs (x = 0.95 +/- 0.86 mm2). The interfaces formed between the host spinal cord and the grafts placed without channels were highly interdigitated and resembled CNS-PNS transition zones; chondroitin sulfate proteoglycans was deposited there. Whereas several neuronal populations including propriospinal, sensory, motoneuronal, and brainstem neurons regenerated into human SC grafts, only propriospinal and sensory neurons were observed to reenter the host spinal cord. Using combinations of anterograde and retrograde tracers, we observed regeneration of propriospinal neurons up to 2.6 mm beyond grafts. We estimate that 1% of the fibers that enter grafts reenter the host spinal cord by 45 days after grafting. Following retrograde tracing from the distal spinal cord, more labeled neurons were unexpectedly found in the region of the dextran amine anterograde tracer injection site where a marked inflammatory reaction had occurred. Animals with bridging grafts obtained modestly higher scores during open field [(x = 8.2 +/- 0.35) vs (x = 6.8 +/- 0.42), P = 0.02] and inclined plane testing (x = 38.6 +/- 0. 542) vs (x = 36.3 +/- 0.53), P = 0.006] than animals with similar grafts in distally capped channels. In summary, this study showed that in the nude rat given methylprednisolone in combination with human SC grafts, some regenerative growth occurred beyond the graft and a modest improvement in function was observed.  相似文献   

13.
The injured adult mammalian spinal cord shows little spontaneous recovery after injury. In the present study, the contribution of projections in the dorsal half of the spinal cord to functional loss after adult spinal cord injury was examined, together with the effects of transgenic cellular delivery of neurotrophin-3 (NT-3) on morphological and functional disturbances. Adult rats underwent bilateral dorsal column spinal cord lesions that remove the dorsal corticospinal projections or underwent more extensive resections of the entire dorsal spinal cord bilaterally that remove corticospinal, rubrospinal, and cerulospinal projections. Long-lasting functional deficits were observed on a motor grid task requiring detailed integration of sensorimotor skills, but only in animals with dorsal hemisection lesions as opposed to dorsal column lesions. Syngenic primary rat fibroblasts genetically modified to produce NT-3 were then grafted to acute spinal cord dorsal hemisection lesion cavities. Up to 3 months later, significant partial functional recovery occurred in NT-3-grafted animals together with a significant increase in corticospinal axon growth at and distal to the injury site. These findings indicate that (1) several spinal pathways contribute to loss of motor function after spinal cord injury, (2) NT-3 is a neurotrophic factor for the injured corticospinal projection, and (3) functional deficits are partially ameliorated by local cellular delivery of NT-3. Lesions of the corticospinal projection may be necessary, but insufficient in isolation, to cause sensorimotor dysfunction after spinal cord injury in the rat.  相似文献   

14.
Transections of the chicken spinal cord after the developmental onset of myelination at embryonic day (E) 13 results in little or no functional regeneration. However, intraspinal injection of serum complement proteins with complement-binding GalC or 04 antibodies between E9-E12 results in a delay of the onset of myelination until E17. A subsequent transection of the spinal cord as late as E15 (i.e., during the normal restrictive period for repair) results in neuroanatomical regeneration and functional recovery. Utilizing a similar immunological protocol, we evoked a transient alteration of myelin structure in the posthatching (P) chicken spinal cord, characterized by widespread "unravelling" of myelin sheaths and a loss of MBP immunoreactivity (myelin disruption). Myelin repair began within 7 d of cessation of the myelin disruption protocol. Long term disruption of thoracic spinal cord myelin was initiated after a P2-P10 thoracic transection and maintained for > 14 d by intra-spinal infusion of serum complement proteins plus complement-binding GalC or 04 antibodies. Fourteen to 28 d later, retrograde tract tracing experiments, including double-labeling protocols, indicated that approximately 6-19% of the brainstem-spinal projections had regenerated across the transection site to lumbar levels. Even though voluntary locomotion was not observed after recovery, focal electrical stimulation of identified brainstem locomotor regions evoked peripheral nerve activity in paralyzed preparations, as well as leg muscle activity patterns typical of stepping in unparalyzed animals. This indicated that a transient alteration of myelin structure in the injured adult avian spinal cord facilitated brainstem-spinal axonal regrowth resulting in functional synaptogenesis with target neurons.  相似文献   

15.
The purpose of this study is to explore the expression of growth-associated protein(GAP-43) in spinal cord segments connected with injured sciatic nerve by the treatment with brazilein in mice. Unilateral sciatic nerve interruption and anastomosis were performed. Physiological saline(blank group), high dose, middle dose and low dose of brazilein were administrated intragastrically to healthy adult BALB/c mice in separate groups. L4-6 spinal segments connected with the sciatic nerve were harvested. Real-time PCR(Polymerase chain reaction) and Western blot analysis were performed to detect the expression of GAP-43 in spinal segments. Histological staining on myelin and the electrophysiology were performed to examine the sciatic nerve recovery. GAP-43 was activated in spinal cord L4-6 connected with injured sciatic nerve. In the survival time of 12 h, 24 h, 3 d, 5 d, 7 d and 14 d, GAP-43 expression in the motor neurons of spinal cord of the high dose group and that in the middle dose group were significantly higher than those on the low dose and blank groups. Myelin in the high dose group and that in the middle dose group were more mature and the potential amplitude and MNCV(motor nerve conduction velocity) in the high and middle dose groups were obviously higher than those in the low dose group and blank group. Brazilein facilitates the expression of GAP-43 in neurons in spinal cord L4-6 segments connected with injured sciatic nerve, which promotes nerve regeneration.  相似文献   

16.
Dynamics of transplants of human embryonic spinal cord fragments development in adult rat spinal cord was studied in immunosuppression. Transplants were shown to take roots and their cellular elements proliferated and differentiated. The peculiarity of such transplants is the lack of rough glio-connective tissue scar. Graft development in the spinal cord depends on histoblastic potential of the tissue transplanted and recipient spinal cord reaction to the transplantation.  相似文献   

17.
OBJECTIVE: To predict spinal cord ischemia after endovascular stent graft repair of descending thoracic aortic aneurysms, temporary interruption of the intercostal arteries (including the aneurysm) was performed by placement of a novel retrievable stent graft (Retriever) in the aorta under evoked spinal cord potential monitoring. METHODS: From February 1995 to October 1997, endovascular stent graft repair of descending thoracic aortic aneurysms was performed in 49 patients after informed consent was obtained. In 16 patients with aneurysms located in the middle and distal segment of the descending aorta, the Retriever was placed temporarily before stent graft deployment. The Retriever consisted of two units of self-expanding zigzag stents connected in tandem with stainless steel struts. Each strut was collected in a bundle fixed to a pushing rod, and the stent framework was lined with an expanded polytetrafluoroethylene sheet. The Retriever was delivered beyond the aneurysm through a sheath and was retracted into the sheath 20 minutes later. A stent graft for permanent use was deployed in patients whose predeployment test results with the Retriever were favorable. Evoked spinal cord potential was monitored throughout placement of the Retriever and stent grafting until the next day. RESULTS: The Retriever was placed in 17 aneurysms in 16 patients. There were no changes in amplitude or latency of evoked spinal cord potential records obtained before or during Retriever placement. After withdrawal of the Retriever, all aneurysms were excluded from circulation immediately after permanent stent grafting. There were no changes in evoked spinal cord potential, nor were neurologic deficits seen after stent graft deployment in any patient. CONCLUSIONS: These results suggest that predeployment testing with the Retriever under evoked spinal cord potential monitoring is promising as a predictor of spinal cord ischemia in candidates for stent graft repair of thoracic aortic aneurysms.  相似文献   

18.
Glial cell line-derived neurotrophic factor (GDNF) has trophic effects on developing dopamine neurons, enhances survival of embryonic motoneurons in vitro and prevents axotomy-induced motoneuron atrophy in vivo. Here we investigate effects of GDNF on grafts of cortex cerebri tissue from E18, P1 and P8 donors and on spinal cord tissue for P8 and adult animals transplanted to the anterior chamber of the eye of host rats. Grafts were treated with GDNF or cytochrome C on days 0, 5, 10, 15, 20 and 25 (total amounts 0.5 microgram GDNF/eye/injection). Spinal cord grafts from P8 donors treated with GDNF grew to sizes larger than controls, had higher numbers of neuron-like cells and showed increased areas of neurofilament immunoreactivity and decreased glial fibrillary acidic protein immunoreactivity. In contrast to the P8 spinal cord grafts, there were no such effects observed in adult spinal cord grafts or in E18, P1 or P8 cerebral cortex grafts. To determine if an endogenous source of GDNF might exert similar effects on spinal cord grafts, we transplanted spinal cord tissue from P1 together with pieces of developing kidney, known to express high levels of GDNF mRNA. Spinal cord cografted with kidney tissue grew to a slightly larger extent then controls. We conclude that GDNF exerts a powerful trophic effect on P8 spinal cord grafts, although GDNF appears unable to support survival of grafted adult spinal cord tissue. Grafts of cortex cerebri from several different stages of development were not affected.  相似文献   

19.
Little spontaneous regeneration of axons occurs after acute and chronic injury to the CNS. Previously we have shown that the continuous local delivery of neurotrophic factors to the acutely injured spinal cord induces robust growth of spinal and supraspinal axons. In the present study we examined whether chronically injured axons also demonstrate significant neurotrophin responsiveness. Adult rats underwent bilateral dorsal hemisection lesions that axotomize descending supraspinal pathways, including the corticospinal, rubrospinal, and cerulospinal tracts, and ascending dorsal spinal sensory projections. One to three months later, injured rats received grafts of syngenic fibroblasts genetically modified to produce nerve growth factor (NGF). Control subjects received unmodified cell grafts or cells transduced to express the reporter gene beta-galactosidase. Three to five months after grafting, animals that received NGF-secreting grafts showed dense growth of putative cerulospinal axons and primary sensory axons of the dorsolateral fasciculus into the grafted lesion site. Growth from corticospinal, raphaespinal, and local motor axons was not detected. Thus, robust growth of defined populations of supraspinal and spinal axons can be elicited in chronic stages after spinal cord injury by localized, continuous transgenic delivery of neurotrophic factors.  相似文献   

20.
Ca2+ channels in distinct subcellular compartments of neurons mediate voltage-dependent Ca2+ influx, which integrates synaptic responses, regulates gene expression, and initiates synaptic transmission. Antibodies that specifically recognize the alpha1 subunits of class A, B, C, D, and E Ca2+ channels have been used to investigate the localization of these voltage-gated ion channels on spinal motor neurons, interneurons, and nerve terminals of the adult rat. Class A P/Q-type Ca2+ channels were present mainly in a punctate pattern in nerve terminals located along the cell bodies and dendrites of motor neurons. Both smooth and punctate staining patterns were observed over the surface of the cell bodies and dendrites with antibodies to class B N-type Ca2+ channels, indicating the presence of these channels in the cell surface membrane and in nerve terminals. Class C and D L-type and class E R-type Ca2+ channels were distributed mainly over the cell soma and proximal dendrites. Class A P/Q-type Ca2+ channels were present predominantly in the presynaptic terminals of motor neurons at the neuromuscular junction. Occasional nerve terminals innervating skeletal muscles from the hindlimb were labeled with antibodies against class B N-type Ca2+ channels. Staining of the dorsal laminae of the rat spinal cord revealed a complementary distribution of class A and class B Ca2+ channels in nerve terminals in the deeper versus the superficial laminae. Many of the nerve terminals immunoreactive for class B N-type Ca2+ channels also contained substance P, an important neuropeptide in pain pathways, suggesting that N-type Ca2+ channels are predominant at synapses that carry nociceptive information into the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号