首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Polydatin is the main bioactive ingredient in many medicinal plants, such as Hu‐zhang (Polygonum cuspidatum), with many bioactivities. However, its poor aqueous solubility restricts its application in functional food. In this work, 6‐O‐α‐Maltosyl‐β‐cyclodextrin (Malt‐β‐CD), a new kind of β‐CD derivative was used to enhance the aqueous solubility and stability of polydatin by forming the inclusion complex. The phase solubility study showed that polydatin and Malt‐β‐CD could form the complex with the stoichiometric ratio of 1:1. The supermolecular structure of the polydatin/Malt‐β‐CD complex was characterized by ultraviolet–visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffractometry (XRD), thermogravimetric/differential scanning calorimetry (TG/DSC), and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. The changes of the characteristic spectral and thermal properties of polydatin suggested that polydatin could entrap inside the cavity of Malt‐β‐CD. Furthermore, to reasonably understand the complexation mode, the supermolecular structure of polydatin/Malt‐β‐CD inclusion complex was postulated by a molecular docking method based on Autodock 4.2.3. It was clearly observed that the ring B of polydatin oriented toward the narrow rim of Malt‐β‐CD with ring A and glucosyl group practically exposed to the wide rim by hydrogen bonding, which was in a good agreement with the spectral data.  相似文献   

2.
Ovine whey proteins were fractionated and studied by using different analytical techniques. Anion‐exchange chromatography and reversed‐phase high‐performance liquid chromatography (HPLC) showed the presence of two fractions of β‐lactoglobulin but only one of α‐lactalbumin. Gel permeation and sodium dodecyl sulfate (SDS)‐polyacrylamide gel electrophoresis allowed the calculation of the apparent molecular mass of each component, while HPLC coupled to electrospray ionisation‐mass spectrometry (ESI‐MS) technique, giving the exact molecular masses, demonstrated the presence of two variants A and B of ovine β‐lactoglobulin. Amino acid compositions of the two variants of β‐lactoglobulin differed only in their His and Tyr contents. Circular dichroism spectroscopy profiles showed pH conformation changes of each component. The thermograms of the different whey protein components showed a higher heat resistance of β‐lactoglobulin A compared to β‐lactoglobulin B at pH 2, and indicated high instability of ovine α‐lactalbumin at this pH.  相似文献   

3.
Age‐induced decomposition of iso‐α‐acids, the main bittering principles of beer, determines the consistency of the beer bitter taste. In this study, the profiles of iso‐α‐acids in selected high‐quality top‐fermented and lager beers were monitored by quantitative high‐performance liquid chromatography at various time intervals during ageing. The degradation of the iso‐α‐acids as a function of time is represented by the ratio, in percentage, of the sum of the concentrations of trans‐isocohumulone and trans‐isohumulone to the sum of the concentrations of cis‐isocohumulone and cis‐isohumulone. This parameter is relevant with respect to the evaluation of bitterness deterioration in aged beers. Trans‐iso‐α‐acids having a shelf half‐life of less than one year proved to be significantly less stable than cis‐iso‐α‐acids, but it appears feasible to counteract degradation if a suitable beer matrix is available. The fate of the trans‐iso‐α‐acids in particular adversely affects beer bitterness consistency. In addition to using hop products containing low amounts of trans‐iso‐α‐acids, brewers may profit of the remarkable stability of tetrahydroiso‐α‐acids, even on prolonged storage, for the production of consistently bitter beers.  相似文献   

4.
5.
6.
Tea polyphenol (TP) inhibits digestive enzymes and reduces food digestibility. To explore the interaction between TP with digestive enzymes, bindings of ‐epigallocatechin‐3‐gallate (EGCG) to trypsin and α‐chymotrypsin were studied in detail using fluorescence, resonance light‐scattering, circular dichroism, fourier transform infrared spectroscopy methods and protein‐ligand docking. The binding parameters were calculated according to Stern–Volmer equation, and the thermodynamic parameters were determined by the van't Hoff equation. The results indicated that EGCG was capable of binding trypsin and α‐chymotrypsin with high affinity, resulting in a change of native conformation of these enzymes. EGCG had a greater influence on the structure of α‐chymotrypsin than trypsin. This study can be used to explain the binding interaction mechanism between TP and digestive enzymes.  相似文献   

7.
An isomerization process of the α‐acids contained in hop extract (with magnesium oxide, potassium hydroxide and magnesium peroxide as catalysts at ambient temperature) was carried out. The influence of two factors (the amount of applied catalyst and the isomerization time) was studied. Ultra‐high performance liquid chromatography was used for the evaluation of the isomerization process. The best results were obtained with magnesium oxide. In this case, the influence of the operating variables on the isomerization process and optimal process parameters were determined using statistical methods. The isomerization method described above could be carried out with high efficiency without heating and could be easily adopted and applied on an industrial scale. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

8.
BACKGROUND: Diabetes mellitus (DM) is a chronic metabolic disorder characterized by defects in insulin secretion and action, which can lead to damaged blood vessels and nerves. With respect to effective therapeutic approaches to treatment of DM, much effort has being made to investigate potential inhibitors against α‐glucosidase and α‐amylase from natural products. The edible marine brown alga Ecklonia cava has been reported to possess various interesting bioactivities, which are studied here. RESULTS: In this study, five phloroglucinal derivatives were isolated from Ecklonia cava: fucodiphloroethol G ( 1 ), dieckol ( 2 ), 6,6′‐bieckol ( 3 ), 7‐phloroeckol ( 4 ) and phlorofucofuroeckol A ( 5 ); compounds 1, 3 and 4 were obtained from this genus for the first time and with higher yield. The structural elucidation of these derivatives was completely assigned by comprehensive analysis of nuclear magnetic spectral data. The anti‐diabetic activities of these derivatives were also assessed using an enzymatic inhibitory assay against rat intestinal α‐glucosidase and porcine pancreatic α‐amylase. Most of these phlorotannins showed significant inhibitory activities in a dose‐dependent manner, responding to both enzymes, especially compound 2 , with the lowest IC50 values at 10.8 µmol L?1 (α‐glucosidase) and 124.9 µmol L?1 (α‐amylase), respectively. Further study of compound 2 revealed a non‐competitive inhibitory activity against α‐glucosidase using Lineweaver‐Burk plots. CONCLUSION: These results suggested that Ecklonia cava can be used for nutritious, nutraceutical and functional foods in diabetes as well as for related symptoms. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
The leaves of Ligustrum purpurascens are used in a Chinese traditional tea called small‐leaved kudingcha, which is rich in phenylpropanoid glycosides (PPGs) and has many beneficial properties. Two critical exoacting glycoside hydrolase enzymes (glucosidases) involved in carbohydrate digestion are α‐glucosidase and α‐amylase. We investigated the properties of PPGs from L. purpurascens for inhibiting α‐amylase and α‐glucosidase activity in vitro and found IC50 values of 1.02 and 0.73 mg mL?1, respectively. The patterns of inhibiting both α‐amylase and α‐glucosidase were mixed‐inhibition type. Multispectroscopy and molecular docking studies indicated that the interaction between PPGs and α‐amylase and α‐glucosidase altered the conformation of enzymes, with binding at the site close to the active site of enzymes resulting in changed enzyme activity. Our studies may help in the further health use of small‐leaved kudingcha.  相似文献   

10.
BACKGROUND: Recent studies indicate that the bioavailability of anthocyanins is extremely low. One of the possible reasons could be their binding to proteins. Therefore, the binding affinity of cyanidin‐3‐glucoside (Cy3glc) to HSA and α‐amylase was investigated by the quenching of protein tryptophan fluorescence. From data obtained, the binding constants and the free Gibbs energy were calculated. The changes in conformation of the proteins tested were studied with circular dichroism and the influence of binding on α‐amylase activity determined. RESULTS: Cy3glc quenched the tryptophan fluorescence and upon ligand binding a change in protein structure was observed related to the corresponding decrease in the α‐amylase activity. The association constants of 25 to 77 × 103 L mol?1 were calculated for different proteins, indicating weak interactions of non‐covalent nature. Competitive binding with HSA in the presence of 8‐anilino‐1‐naphthalene sulfonic acid suggest involvement of hydrophobic interactions, in the case of HSA the possible site being subdomain IIA. CONCLUSION: The strongest affinity of Cy3glc for HSA being at pH 7 underlines its potential in transport and distribution of the phenolic compounds in organisms. An influence on salivary amylase activity is possible when drinking berry juices with high anthocyanins content. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
The cell wall of Paracoccidioides brasiliensis, which consists of a network of polysaccharides and glycoproteins, is essential for fungal pathogenesis. We have previously reported that N‐glycosylation of proteins such as N‐acetyl‐β‐d ‐glucosaminidase is required for the growth and morphogenesis of P. brasiliensis. In the present study, we investigated the influence of tunycamicin (TM)‐mediated inhibition of N‐linked glycosylation on α‐ and β‐(1,3)‐glucanases and on α‐(1,4)‐amylase in P. brasiliensis yeast and mycelium cells. The addition of 15 µg/ml TM to the fungal cultures did not interfere with either α‐ or β‐(1,3)‐glucanase production and secretion. Moreover, incubation with TM did not alter α‐ and β‐(1,3)‐glucanase activity in yeast and mycelium cell extracts. In contrast, α‐(1,4)‐amylase activity was significantly reduced in underglycosylated yeast and mycelium extracts after exposure to TM. In spite of its importance for fungal growth and morphogenesis, N‐glycosylation was not required for glucanase activities. This is surprising because these activities are directed to wall components that are crucial for fungal morphogenesis. On the other hand, N‐glycans were essential for α‐(1,4)‐amylase activity involved in the production of malto‐oligosaccharides that act as primer molecules for the biosynthesis of α‐(1,3)‐glucan. Our results suggest that reduced fungal α‐(1,4)‐amylase activity affects cell wall composition and may account for the impaired growth of underglycosylated yeast and mycelium cells. © 2013 The Authors. Yeast published by John Wiley & Sons Ltd.  相似文献   

12.
The activities of four natural phenolics, kaempferol, galangin, carnosic acid and polydatin in scavenging free radicals, inhibiting advanced glycation end‐product (AGE) formation, α‐amylase and α‐glucosidase and trapping methylglyoxal (MGO), were evaluated in this study. Carnosic acid and galangin had the highest activity in scavenging free radicals. Kaempferol and galangin had the greatest activity in preventing bovine serum albumin (BSA) against glycation and reducing glycated proteins. Polydatin had the greatest performance in trapping MGO to reduce glycation reaction. However, there was no significant difference for kaempferol, galangin and carnosic acid in inhibiting AGE formation by BSA‐MGO reaction. Kaempferol, galangin and carnosic acid were the competitive inhibitors for α‐amylase, while kaempferol and carnosic acid were noncompetitive inhibitors for α‐glucosidase. However, polydatin showed as a mixed noncompetitive inhibitor for both α‐amylase and α‐glucosidase. The results indicated that the four natural phenolics have potential in inhibiting AGE production and the digestive enzymatic activity with different mechanisms.  相似文献   

13.
Six varieties of Solanum tuberosum L potato grown in the Bolivian highlands under drought stress, with and without irrigation, were analysed for their content of glycoalkaloids (GAs). The plant material consisted of three drought‐tolerant varieties from a local breeding programme (PROINPA), Potosina, Chapaquita and Pampeña, and three control cultivated varieties, Malcacho, Sani Imilla and Desiree, either susceptible or relatively tolerant to drought. α‐Solanine and α‐chaconine were quantified in both the peel and flesh of the tubers. A significant increase in GA concentration (α‐solanine + α‐chaconine) was observed under drought stress conditions in most varieties; average concentration increases of 43 and 50% were registered in the improved and control cultivars respectively. In all tested cultivars, however, the GA concentration remained lower than the recommended food safety level (200 mg kg−1 fresh tubers). It ranged from 52.4 to 100 mg kg−1 fresh tubers in the improved cultivars and from 55.6 to 122.3 mg kg−1 fresh tubers in the controls. In the improved and control varieties the α‐solanine content averaged 42.6 and 35.4% of the total potato GAs respectively and was not significantly affected by drought stress, except in Desiree. In all conditions the peel contained the greatest proportion of total GAs. The hybrid variety Pampeña (new drought‐tolerant variety) contained the lowest amounts of GAs, which were lower than those of the control varieties, with and without irrigation. © 2000 Society of Chemical Industry  相似文献   

14.
15.
Grape seeds collected from vinification of various grape varieties were extracted by supercritical CO2 for oil recovery. The defatted residues thus obtained were considered as a re‐utilisable co‐product and assessed for phenolic content, reducing capacity and inhibitory activities against mammalian α‐amylase and α‐glucosidase enzymes. Supercritical CO2 treatment led to higher recovery of anthocyanins. Reducing capacity of phenolic extracts reached up to ~2200 mmolFe(II) kg?1, much higher than that of various natural phenolic sources. The anthocyanin‐rich extracts showed the highest inhibitory effectiveness towards α‐glucosidase (I50 value equal to ~40 μg gallic acid equivalents (GAE)/mL ~ half than acarbose). Inhibitory effectiveness towards α‐amylase activity was similar among grape varieties, with I50 values comparable to that of acarbose and correlated with proanthocyanidin contents. These results could pave the way for an efficient processing of grapes, including cascade processes, namely: winemaking, oil extraction from recovered grape seeds and phenolic extraction from defatted grape seeds as potential cost‐effective nutraceuticals.  相似文献   

16.
17.
Three phytosterols were isolated from Musa spp. flowers for evaluating their capabilities in inhibiting glucosidase and amylase activities and glycation of protein and sugar. The three phytosterols were identified as β‐sitosterol (PS1), 31‐norcyclolaudenone (PS2) and (24R)‐4α, 14α, 4‐trimethyl‐5α‐cholesta‐8, 25(27)‐dien‐3β‐ol (PS3). IC50 values (the concentration of inhibiting 50% of enzyme activity) of PS1, PS2 and PS3 against α‐glucosidase were 283.67, 11.33 and 43.10 μg mL?1, respectively. For inhibition of α‐amylase, the IC50 values of PS1, PS2 and PS3 were 52.55, 76.25 and 532.02 μg mL?1, respectively. PS1 was an uncompetitive inhibitor against α‐amylase with Km at 5.51 μg mL?1, while PS2 and PS3 exhibited a mixed‐type inhibition with Km at 52.36 and 2.49 μg mL?1, respectively. PS1 and PS2 also significantly inhibited the formation of advanced glycation end products (AGEs) in a BSA–fructose model. The results suggest that banana flower could possess the capability in prevention of the diseases associated with abnormal blood sugar and AGEs levels, such as diabetes.  相似文献   

18.
Bio‐availability of different α‐tocopherol forms in livestock animals is measured by the increase in plasma or tissue concentrations of α‐tocopherol after oral administration. It is generally accepted that RRR‐α‐tocopheryl acetate (natural source vitamin E derived from vegetable oil) has a higher bio‐availability compared to allrac‐α‐tocopheryl acetate (synthetic vitamin E, i.e. α‐tocopherol produced by chemical synthesis). However, different bio‐availability ratios have been reported in the literature. The major reason for conflicting results in literature studies was the inability to separate the proportion of α‐tocopherol originating from test materials, from the proportion of α‐tocopherol originating from basal dietary ingredients and pre‐feeding. This causes significant variability. For bio‐availability determination, a baseline or control treatment is essential. The estimation of bio‐availability without correction for basal vitamin E status will lead to incorrect interpretation of the results. When using proper methodologies, it is possible to correct for the impact of α‐tocopherol intake from basal ingredients and α‐tocopherol originating from pre‐feeding, therefore yielding results reflecting the true relative bio‐availability of different α‐tocopherol substances. When reviewing literature data a critical evaluation of the method used in determination of relative bio‐availability is recommended. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
The finding of new isolates of non‐Saccharomyces yeasts, showing beneficial enzymes (such as β‐glucosidase and β‐xylosidase), can contribute to the production of quality wines. In a selection and characterization program, we have studied 114 isolates of non‐Saccharomyces yeasts. Four isolates were selected because of their both high β‐glucosidase and β‐xylosidase activities. The ribosomal D1/D2 regions were sequenced to identify them as Pichia membranifaciens Pm7, Hanseniaspora vineae Hv3, H. uvarum Hu8, and Wickerhamomyces anomalus Wa1. The induction process was optimized to be carried on YNB‐medium supplemented with 4% xylan, inoculated with 106 cfu/mL and incubated 48 h at 28 °C without agitation. Most of the strains had a pH optimum of 5.0 to 6.0 for both the β‐glucosidase and β‐xylosidase activities. The effect of sugars was different for each isolate and activity. Each isolate showed a characteristic set of inhibition, enhancement or null effect for β‐glucosidase and β‐xylosidase. The volatile compounds liberated from wine incubated with each of the 4 yeasts were also studied, showing an overall terpene increase (1.1 to 1.3‐folds) when wines were treated with non‐Saccharomyces isolates. In detail, terpineol, 4‐vinyl‐phenol and 2‐methoxy‐4‐vinylphenol increased after the addition of Hanseniaspora isolates. Wines treated with Hanseniaspora, Wickerhamomyces, or Pichia produced more 2‐phenyl ethanol than those inoculated with other yeasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号