首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 56 毫秒
1.
基于矩阵的模糊关联规则挖掘算法及其应用研究   总被引:1,自引:0,他引:1  
针对布尔型关联规则不能表达挖掘对象中模糊信息的关联性,给出了一系列有关模糊关联规则的定义,并提出了一种基于矩阵结构的模糊关联规则数据挖掘算法(FARMBM).该算法通过构造矩阵结构来压缩存储模糊模式候选集和频繁集,有效节约了存储模糊模式候选集和模糊模式频繁集内存花销,只需扫描数据库两遍,且可以有效减少系统的I/O开销.这里把FARMBM运用到入侵检测的仿真实验中,实验结果表明,该算法是有效的.  相似文献   

2.
对于模糊关联规则挖掘算法存在的不足,首先为了软化数量型属性论域的划分边界,借用了FCM算法将数量型属性离散化,并把数据集划分成若干个模糊集等级;然后,对模糊置信度进行定义时,把经典关联规则中的置信度的定义经过扩展后直接运用到模糊集上,不免会带来一些逻辑推理上的问题,采取了蕴涵度代替模糊置信度的方法,引入模糊蕴涵算子,经过进一步推理论证,证明了蕴涵度能够用模糊支持度来代替。提出了一种基于模糊聚类和蕴涵度的模糊关联规则挖掘算法,并通过实验证明了算法的有效性。  相似文献   

3.
雷力  徐建波 《信息技术》2006,30(10):1-5
针对自动从文档中导出关键词/词条之间的关联性问题,在研究加权挖掘算法和向量空间模型中权值特点的基础上,提出了一种新的矩阵加权关联规则挖掘算法。  相似文献   

4.
林海萍 《信息技术》2006,30(10):74-76
针对渐进式关联规则挖掘问题提出了一个有效的处理算法,即IDM—A算法。它能根据数据库的动态变化,高效地进行关联规则的更新。通过知识数据库的维护,最多只需要扫描原始数据库一次,就能得到所需的频繁项目集,能有效地降低更新关联规则所需的时间成本。  相似文献   

5.
文中研究一种如何有效挖掘含有未知数值属性的多属性数据关联规则方法。对FPL算法进行了改进,扫描一次数据库,就可以找出所有频繁项集,且当最小支持度变动时,不需重新构建FPL,能快速找出所有频繁项集。  相似文献   

6.
CR:一种逆向的关联规则挖掘算法   总被引:4,自引:0,他引:4  
引入与交易相关的有关概念,对传统关联规则挖掘的概念进行了扩展,并基于交易提出了一种关联规则挖掘算法,该算法从较长的交易入手,试图找出长的频繁项集,再确定它们的子项集,从而避免了组合爆炸问题。该算法对原数据库进行1次扫描,对压缩数据库进行了2次扫描,较Apriori算法减少了扫描次数,提高了挖掘效率。  相似文献   

7.
针对模糊关联规则挖掘时隶属函数的确定困难以及区间划分边界过硬等问题,提出了模糊关系关联规则挖掘算法,确定了关系等级数目和相邻等级相似度,将语言表达式(事务的属性值)根据模糊运算规则映射到标签集的各个等级上得到等级权值。在这些权值的基础上定义了模糊关系支持度和置信度,阐述了算法的详细步骤,最后给出了算法在服务信任领域挖掘关联规则的应用过程。  相似文献   

8.
当前关联规则挖掘主要着眼于正关联规则,如A→B的关联规则的挖掘,这种单一的只对正关联规则的挖掘方式存在严重的弊端,他掩盖了数据之间存在的隐含负关联规则,进而无法得出一些正关联规则中某些项目间相互制约的负关联关系。在关联规则概念和性质的基础上提出了基于频繁模式树的拓展式的正、负项目的关联规则挖掘算法,通过对数据库的遍历形成前缀链表,不仅挖掘包含所有正项目的关联规则,而且还能够挖掘出所有包含负项目的关联规则,不会造成负关联规则的淹没。并对算法的效率和可行性进行分析,该算法在描述关联规则项目间的相互独立程度上比已有的单一挖掘负项目的关联规则算法更具优势。  相似文献   

9.
关联规则的开采是数据挖掘中的一个重要问题,其核心是频繁模式挖掘。频繁模式挖掘算法的高效率性近年来是许多学者研究的方向。首先对关联规则挖掘问题进行了描述,其次对一种基于项目可辨识向量及其“与”运算设计的频繁项集快速挖掘算法SLIG进行了分析,最后利用二元关系矩阵及其项之间的二元关系数目,缩减候选频繁k项集的产生,提出了改进算法SLIG*,提高了SLIG算法的效率。  相似文献   

10.
关联规则挖掘算法   总被引:13,自引:3,他引:13  
关联规则挖掘是数据挖掘和知识发现中的一个重要问题.自提出以来得到了广泛的研究。目前关联规则挖掘算法可以分为广度优先算法和深度优先算法两大类,每类都有经典高效的算法提出。但是.这些算法大都是从其自身的角度来描述的,缺乏系统的分类和比较。文章从关联规则挖掘的形式化定义出发,给出频集挖掘的解空间,对两大类算法中的几种经典算法进行了概述,并分析了它们的优缺点。  相似文献   

11.
At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attributes are got more and more attention. And the most important step is to mine frequent sets. In this paper, we propose an algorithm that is called fuzzy multiple-level association (FMA) rules to mine frequent sets. It is based on the improved Eclat algorithm that is different to many researchers’ proposed algorithms that used the Apriori algorithm. We analyze quantitative data’s frequent sets by using the fuzzy theory, dividing the hierarchy of concept and softening the boundary of attributes’ values and frequency. In this paper, we use the vertical-style data and the improved Eclat algorithm to describe the proposed method, we use this algorithm to analyze the data of Beijing logistics route. Experiments show that the algorithm has a good performance, it has better effectiveness and high efficiency.  相似文献   

12.
基于候选项集个数上阶的增量式关联规则更新算法   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种有效的增量式关联规则挖掘算法IAR,算法的特点在于:提出并采用了基于候选项集个数上阶的选择扫描数据库的机制,可有效减少数据库的扫描次数;算法是一种通用的增量式算法,提出了最小支持度和数据库均改变时,增量式挖掘中的重要性质,从而可充分利用上一次挖掘的结果,有效减少候选项集的数目.并且提出了基于组合数学和项集等价类理论的计算候选项集个数的上阶的方法.通过大量的数据实验,表明算法的效率比已有的算法有了很大提高.  相似文献   

13.
针对传统关联规则可视化挖掘方法不利于处理多值属性数据、缺乏展现数据间的频繁模式和关联模式以及效率低下等问题,提出了基于KAF因子和CHF因子的Apriori改进算法进行多值属性关联规则挖掘,实现了一种新的基于概念格的多值属性关联规则可视化方法.运用概念格理论对多值属性数据进行了重新定义和分类,建立了较为完整的挖掘过程参数调整策略,方便用户选择关键属性值进行规则挖掘分析,提高了算法运行速度和挖掘效率.以概念格结构将多值数据组织起来,实现了对频繁项集的可视化展示,以及关联规则的多模式可视化展示.实验结果表明,改进后的挖掘算法具有更好的性能,所提出的可视化形式和已有成果相比具有良好的展现效果.  相似文献   

14.
充分研究新型的数据前期预处理及金融数据联系的一些时间变量的预处理方法,提出一种基于清洗关联规则的金融数据挖掘算法.引入关联规则的分析在一定支持度的约束下研究和金融紧密相关的一些因素,在应用过程中随着算法的开展,对重点部门与重点功能进行观测与预警.实验证明,该方法可以更加准确的进行金融数据状态的跟踪,挖掘效率更高.  相似文献   

15.
朱红萍  巩青歌 《电子科技》2011,24(10):85-87,92
针对关联规则挖掘中的高效更新问题,对增量和负增量问题进行了讨论,提出当最小支持度发生变化时可归结为数据库发生变化的情形进行讨论。采用十字链表来分别存储原数据库DB和变化数据库db中,各频繁项集及其支持度s1和s2,通过对s1,s2及最小支持度s0的比较分析,判断项集是否为频繁项集,减少了扫描数据库的次数,提高了更新后的...  相似文献   

16.
频繁项集挖掘是关联规则挖掘中至关重要的一步。对于稠密数据集的频繁项集挖掘,传统的挖掘算法往往产生大量无用的中间结果,造成内存利用率的极大浪费,尤其是在支持度较低的情况下。Diffsets算法通过引入"差集"的概念,在一定程度上解决了挖掘过程中产生的大量中间结果与内存容量之间的矛盾。改进型Diffsets算法是在原算法的基础上,在差集运算过程中根据差集中所包含的事务标识个数进行递减排序,进一步减少了挖掘过程中产生的中间结果数量。分析与实例表明,改进后的算法在执行过程中将占用更少的内存空间,加快了算法的收敛速度。  相似文献   

17.
针对传统Apriori算法的不足之处,提出两种Apriori改进算法,分别基于构造辅助表和项集求交集策略。改进算法大幅度减少扫描数据库的次数,缩减对不必要事务的扫描时间,显著提高频繁项集的生成效率,从而使算法达到更高的运算效率。实验结果表明,两种改进算法都是有效的关联规则挖掘方法,且比Apriori算法性能更优,亦为关联规则挖掘研究提供了一些科学可行的新思路。  相似文献   

18.
基于项集特性的关联规则挖掘中Apriori算法的改进   总被引:2,自引:0,他引:2  
提出一个改进Apriori的算法IApr,利用事务数据库的事务数相对于项集的项的个数而言要大得多这一特点,采用线性存储结构,并结合推出并证明的项集特性,考虑候选频繁项目集的各个项的应满足的条件,只需扫描一次事务数据库,有效减少了生成候选频繁项集的数目,从数据扫描量、搜索空间、时间复杂度上分析都提高了算法效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号