首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 250 毫秒
1.
采用稀土铈盐在镁合金表面生成了化学转化膜,通过扫描电镜、能谱分析等手段研究了采用植酸对镁合金表面及其表面化学转化膜进行后处理的改性作用,讨论了植酸浸泡溶液与工艺参数对吸附膜增重的影响.研究表明,镁合金表面植酸浸泡吸附膜以及化学转化膜植酸浸泡处理后膜层的增重随植酸浓度的增加、温度的升高及时间的延长而增大,所得化学转化膜经植酸浸泡处理可改善膜层表面龟裂,提高镁合金及其表面转化膜的耐蚀性,代替对环境污染严重的铬酸盐处理技术;并对镁合金表面膜的微观形貌与元素组成进行了表征.  相似文献   

2.
为了进一步提高镁合金转化膜防腐性能的影响,将铈基转化复合于在AZ31B镁合金植酸转化膜表面,制备了一种铈基一植酸复合转化膜,应用析氢实验、Tafel分析方法及SEM、EDS对AZ31B镁合金不同转化膜的防腐性能及表面微观结构及成份进行了研究。结果表明复合转化膜表面主要由C、O、P、Ce、Mg及Al元素所组成,复合转化膜相比于植酸转化膜及铈基转化膜具有更好的致密性,从而复合转化膜相比于植酸转化膜及铈基转化膜具有更好的防腐性能。  相似文献   

3.
陈言坤  鲁彦玲  杜仕国  赵志宁 《功能材料》2011,42(Z3):423-426,430
选择AZ91D镁合金为实验材料,在通过正交实验优化镁合金表面植酸转化膜成膜工艺的基础上,利用扫描电镜、能谱分析、点蚀实验和电化学测量等分析手段研究了植酸浓度对植酸转化膜表面形貌、表面成分及其耐蚀性的影响.结果表明植酸转化膜主要由Mg、A1、O、P和C元素组成,其中Mg元素含量随着植酸浓度的增大而减小,而P元素含量随着植...  相似文献   

4.
为了进一步探讨工艺条件对镁合金表面植酸转化膜的影响,采用扫描电镜、能谱分析、点蚀试验和电化学测量等研究AZ91D镁合金表面不同成膜时间对植酸转化膜表面形貌、成分及其耐蚀性的影响规律.结果表明:植酸转化膜主要由Mg,Al,O,P,C元素组成,其中Mg的质量分数随成膜时间的延长而减小,而P的质量分数随成膜时间的延长逐渐增大...  相似文献   

5.
通过在植酸基础转化液中添加两种不同组成的成膜促进剂制备镁合金植酸转化膜,采用SEM、EDS及失重法研究了添加剂对转化膜结构、形貌及耐蚀性能的影响.结果表明:经植酸转化处理后,镁合金表面耐蚀性能均得到了大幅提高,120 h盐水浸泡后失重率仅为镁合金基材的1/5;Ca(NO3)2、NH4VO3及Na2C4 H4O6·2H2O组合添加剂的加入有利于改善膜层结构和致密性,转化膜由完整、致密且与基材结合紧密的内层和网纹的外层组成,耐蚀性能较纯植酸转化膜提高1倍,而NaF、Na2B4O7及Na2C4H4O6·2H2O的组合添加剂则对转化膜结构和耐蚀性能影响不显著.  相似文献   

6.
AZ91D镁合金表面植酸转化处理   总被引:4,自引:1,他引:3  
为了进一步优化镬合金表面植酸转化膜的性能,通过正交试验获得了最优工艺,制备了耐蚀性优良的转化膜.采用扫描电子显微镜和能谱仪对转化膜的微观形貌和成分进行了分析,通过点滴试验、极化曲线和电阻抗谱对植酸转化膜的耐腐蚀性能进行了研究.结果表明:植酸转化膜主要由Mg,AJ,O,P,C和Na元素组成;膜层可显著改善镁合金基体的耐蚀...  相似文献   

7.
高焕方  张胜涛  李军  刘益风  牛英男 《材料保护》2011,44(9):35-37,43,92,93
为了探讨转化温度对镁合金防腐蚀性能的影响,应用析氢试验、Tafel分析法及SEM,EDS,FTIR研究了不同植酸液温度所形成的转化膜的防腐蚀性能及表面微观形貌、元素组成及官能团构成。结果表明转化温度对镁合金植酸转化膜的防腐蚀性能有较大的影响:在较低范围内,转化膜的防腐蚀性能随着温度的升高而增加,转化温度为40℃时,转化...  相似文献   

8.
植酸在镁合金防护中的应用现状   总被引:4,自引:0,他引:4  
植酸是从谷类作物中提取的无毒有机磷酸化合物,由于它可迅速与Ca2 ,Mg2 ,Fe2 和Zn2 等金属离子结合形成螯合物,因此可用于金属的防护。本文综述了植酸在镁合金化学转化膜和阳极氧化上的应用。由于植酸环保而且效果好,在镁合金防护上具有较大应用前景。  相似文献   

9.
为了进一步提高镁合金表面V/Zr转化膜的耐蚀性,在转化液中加入植酸,在AZ31B镁合金表面制备了植酸改性V/Zr转化膜。采用扫描电镜、能谱分析、傅里叶红外光谱、中性盐雾试验、电化学测试及厚度仪分析了转化膜的性能,并对转化液配方及工艺条件进行了优选。结果表明:转化液最佳配方为3.0 g/L偏钒酸钠,2.0 g/L氟锆酸钾,1.0 m L/L植酸;最佳工艺参数为温度50℃,p H值2.0,时间15 min;植酸改性后转化膜主要由C,P,O,F,Mg,Al,V,Zr元素组成,呈无定形结构,耐中性盐雾时间为140 h,较改性前增加了60 h,其腐蚀电位较改性前正移了91 m V,自腐蚀电流密度减小了1个数量级,膜厚较改性前增加2.73μm,转化膜耐蚀性显著提高。  相似文献   

10.
为改善植酸单独使用时难以在铜表面形成完整且致密转化膜的问题,采用浸渍法在铜表面制备含植酸(PA)和不同唑类衍生物的转化膜,利用接触角测试仪、电化学工作站、扫描电子显微镜(SEM)、能谱分析(EDS)表征了转化膜的疏水性、耐腐蚀性、表面形貌及成分,使用X射线电子能谱仪(XPS)对耐蚀性能最佳的PA+BTA转化膜的成膜机理进行分析。结果表明:加入不同唑类衍生物所形成的转化膜的耐腐蚀性提高,其中加入苯并三氮唑(BTA)和植酸的转化膜的接触角达到最大值(135.51°),腐蚀电流密度达到最小值(2.050×10-7 A/cm2),阻抗值超过90 kΩ;观察PA+BTA转化膜的SEM形貌发现,该转化膜在铜基底表面分布均匀且致密;对PA+BTA转化膜进行XPS谱分析,发现PA和BTA均参与了转化膜的形成,在铜基底表面生成了PA-Cu和BTA-Cu配合物,能有效保护铜基底。  相似文献   

11.
镁合金化学转化膜的耐腐蚀性研究   总被引:3,自引:1,他引:3  
在50g/L KMnO4和100g/L Na3PO4组成的基础化学转化溶液中添加6 g/L缓蚀剂,在AZ31镁合金上获得了化学转化膜.用植酸作为转化处理液,分析了pH值、温度、转化时间及植酸用量(质量分数)对AZ31合金成膜及耐蚀性的影响,SEM观察表明,植酸膜经3.5%的NaCl溶液浸蚀后有一定的自愈合能力.这两种方法获得的转化膜均比铬酸膜光滑、致密均匀.  相似文献   

12.
张飞洋  蔡舒  凌瑞  王丰武  于念 《复合材料学报》2017,34(12):2819-2825
采用微波辅助法在AZ31镁合金表面制备了植酸镁/羟基磷灰石(PA/HA)复合涂层。利用FESEM、EDS、XRD和电化学性能测试等方法表征涂层的表面形貌、物相组成以及耐蚀性能,探究了植酸溶液的pH值对PA/HA复合涂层形貌及耐蚀性能的影响,并通过浸泡实验研究了镁合金及PA/HA复合涂层在模拟体液(SBF)中的降解矿化行为。结果表明:在植酸预处理中,植酸溶液的pH=5.0时制备得到的PA/HA复合涂层表面均匀、无裂纹,与镁合金基底的界面结合良好;并且在此pH值下PA/HA复合涂层包覆镁合金样品的交流阻抗最大,自腐蚀电流密度最小,说明其耐蚀性最好。在SBF中,PA/HA复合涂层能够快速诱导磷灰石的生成,并显著提高镁合金基底的耐蚀性能。  相似文献   

13.
工艺参数对镁合金植酸转化膜的影响   总被引:3,自引:0,他引:3  
传统铬酸盐化学转化处理能提高镁合金的耐腐蚀性能,但因处理液有剧毒而受到限制.采用环保型金属处理剂植酸对AZ31B镁合金进行化学转化处理,通过正交试验初步确定了工艺参数(植酸浓度、处理液pH值、处理时间、处理温度)对植酸转化膜耐蚀性影响的主次顺序,并优化了工艺参数.采用扫描电子显微镜(SEM)、电子能谱仪(EDS)、光学金相显微镜对植酸转化膜腐蚀前后的形貌、成分和厚度进行了分析;通过电化学测试技术和化学浸泡法测试了其耐蚀性能.结果表明:与传统的铬酸盐和磷酸盐体系相比,经植酸处理后,AZ31B镁合金在3.5%NaCl溶液中的腐蚀电位分别提高了0.06 V和0.09 V,且在相同的电位下,阳极电流密度最小,电化学性能得到显著改善,腐蚀速度降低.  相似文献   

14.
基于植酸(PA)优异的螯合能力,利用Ag^+,Cu^2+,Fe^3+和Zn^2+4种金属离子与PA发生螯合作用并沉积吸附在层状双羟基复合金属氧化物(LDHs)表面,形成核-壳结构,以达到改善层状黏土与聚合物基体之间界面相容性的目的。制备出不同金属离子负载的表面包覆改性LDHs(LDHs@PA-M),深入研究LDHs@PA-M在不同金属离子负载下的微观形貌,并将其应用在聚己内酯(PCL)的增强改性中。结果表明,PA能够与Ag^+和Cu^2+在LDHs表面形成稳定、均匀的纳米包覆层。利用金属Ag^+和Cu^2+优异的抗菌活性,LDHs@PA-Ag^+和LDHs@PA-Cu^2+对大肠杆菌(E.coli)的抗菌率均超过99.99%。相比于纯的PCL,LDHs@PA-Cu^2+/PCL纳米复合材料(LDHs@PA-Cu^2+的质量分数为1%)的拉伸强度和断裂伸长率分别提高了30.7%和33.3%,达到了40.9 MPa和816%,力学性能增强效果最为显著。LDHs@PA-Cu^2+/PCL和LDHs@PA-Ag^+/PCL纳米复合材料对E.coli的抗菌率均达到99.99%,表现出优异的抗菌活性,拓展了层状黏土/生物基高分子复合材料在活性包装领域的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号