首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
介绍了氧化镁湿法烟气脱硫工艺。利用小型填料塔对影响氧化镁湿法脱硫效率及工艺关键参数的单因素进行了试验研究(如体系pH值、入口烟气浓度、烟气流量、液气比、温度等)。结果表明:体系pH值、烟气浓度、烟气流量对脱硫效率的影响最为显著;随着体系pH值增大、入口SO_2浓度和烟气流量的增大,出口SO_2浓度显著增大,脱硫效率下降;当吸收液的pH值控制在6.0~6.5、液气比控制在4~5 L/m~3,可以实现90%以上的脱硫效率。  相似文献   

2.
过渡金属离子液相催化氧化烟气脱硫   总被引:10,自引:1,他引:10  
烟气脱硫技术属我国环保市场急需的关键技术。过渡金属离子液相催化氧化烟气脱硫技术可以利用产生的稀硫酸制取石膏、肥料和聚合硫酸铁等多种高附加值的副产品。阐述了烟气脱硫的反应机理、脱硫吸收液和脱硫装置 ,以及吸收液酸度、温度、液气比、气速和入口浓度等因素对脱硫效率的影响。评述了金属离子的协同作用、各种工艺路线及副产物  相似文献   

3.
本实验利用一套自行设计的鼓泡反应装置进行了臭氧前置氧化、氧化镁溶液吸收的脱硫脱硝反应特性研究,探索了臭氧浓度、混合烟气温度、吸收液pH值、反应温度、SO_2及NO初始浓度等参数对脱硫脱硝效率的影响。结果显示,高O_3浓度和烟气温度有助于SO_2和NO的脱除,但吸收液pH值和反应温度不宜过高,烟气中的SO_2浓度变化对NO的脱除效率影响甚微。最佳实验条件下SO_2脱除效率可达99%,NO脱除效率可达52%。  相似文献   

4.
近年来氨法脱硫以其低投入,脱硫率高以及有价值的副产物越来越受到重视。今以并流式湿壁塔脱硫实验装置为例,以氨水作为吸收液,在20℃和常压下研究了氨法烟气脱硫的气液传质与化学反应过程,并且在伴有快速的化学反应吸收的双膜理论的基础上,建立了数学模型。利用该模型对并流式湿壁塔氨法脱硫过程进行了模拟,分析了吸收液pH值、液气比、吸收液浓度、烟气流速以及初始SO2浓度对脱硫效率的影响,并与实验结果进行了对比。结果表明:在进气浓度为2500 mg·m·3时,最佳的工艺条件为液气比为2.2~2.8 L·m·3,吸收液pH值为5.8~6.5,烟气流速为1.5~2.5 m·s-1;该模型的计算值与实验数据基本吻合,为氨法烟气脱硫的工业化应用提供了理论参考。  相似文献   

5.
大气污染中化石燃料燃烧烟气脱硫脱硝成为我国一项严峻的任务。烟气脱硫脱硝技术的发展有效提升了我国大气污染治理成效,促进化石燃料的清洁高效利用。本文研究了基于介质阻挡放电低温等离子体的脱硫脱硝方法、基于改进活性碳吸附法的脱硫脱硝技术和基于二氧化氯湿法的溶液吸收法,并分析相关因素的影响。在等离子体法的脱硫脱硝试验中,分析了反应器两端电压、频率和湿度等对脱硫脱硝效率的影响;在活性碳吸附法的脱硫脱硝试验中,分析了环境温度、空塔速度和SO_2浓度对脱硫脱硝效率的影响;在溶液吸收法的脱硫脱硝试验中,分析了SO_2浓度、ClO_2浓度、pH值、吸收液温度等因对脱硫脱硝效果的影响。  相似文献   

6.
为了进一步研究氨法烟气脱硫工艺过程,以非平衡级传质理论为依据,利用化工流程模拟软件Aspen Plus建立填料吸收塔脱除SO2过程的数值计算模型,分析和优化操作参数对脱硫效果的影响,模拟结果与文献值吻合较好。模型计算结果表明:脱硫率随着吸收液pH值和液气比的增大而增大;随着进口SO2质量浓度和进口烟气流量的增大而降低,并得出吸收液pH值及液气比在氨法烟气脱硫效率影响因素中占主要位置。所建立的氨法烟气脱硫工艺过程模型准确合理,模拟结果可为脱硫系统实际运行调节各操作参数对脱硫效果的影响提供参考和借鉴。  相似文献   

7.
燃煤烟气污染物资源循环利用是烟气污染治理的发展方向,为探究直接电解氨基湿法脱硫脱硝吸收液制备过硫酸铵进行资源化回收的可行性,在板框式隔膜流动电解槽中考察了硫酸铵浓度、硫氰酸铵浓度、硫酸浓度、温度、电流密度、流速、电解时间以及吸收液中杂质成分等工艺参数对电解制备过硫酸铵的影响特性。结果表明,吸收液中的尿素和氨水对电流效率有抑制作用,而SO32-和NO3-对电流效率几乎没有影响,模拟吸收液的电流效率仅为69.88%,远低于单一电解硫酸铵溶液86.98%的电流效率。对吸收液采取去除尿素、亚硫酸根氧化和吸收液pH调节(pH=2.2)预处理后,其电流效率达到85.12%。氨基湿法脱硫脱硝吸收液电解工艺不仅可高效制备过硫酸铵,阴极还可副产氢气,电解结晶后余液进一步与氨基湿法脱硫脱硝循环吸收液耦合,还可较大提升烟气脱硝效率,是一种新型的绿色高效的烟气净化技术路线,具有极大的发展前景。  相似文献   

8.
介绍了离子液循环吸收脱硫技术在冶炼烟气制酸装置硫酸尾气脱硫系统中的应用。详述离子液浓度、吸收液温度变化、进塔烟气压力、溶液循环量等因素对脱硫效率的影响,以及对主塔、溶液输送设备和脱盐装置的改造,总结了工艺运行情况以及工艺操作控制方面的经验。结合实际运行数据,对该系统的运行成本及能耗、物耗做了统计分析。该技术在工程应用过程中所开展的节能降耗具有参考价值。  相似文献   

9.
双碱法湿式烟气脱硫的特点是利用吸收液(NH4+,Na+和K+等的盐类溶液)进行烟气脱硫,然后用石灰乳或石灰石粉末再生吸收液,再生的脱硫液被送回脱硫塔循环利用。由于(NH4+,Na+和K+等)溶液碱性强,吸收二氧化硫后的反应物溶解度大,不会过饱和结晶,造成结晶堵塞问题,从而克服了传统石灰石.石灰法容易结垢的缺点。  相似文献   

10.
氨基湿法脱硫脱硝吸收液电解制备过硫酸铵   总被引:1,自引:0,他引:1       下载免费PDF全文
冯浩  熊源泉  吴波 《化工学报》2017,68(12):4691-4701
燃煤烟气污染物资源循环利用是烟气污染治理的发展方向,为探究直接电解氨基湿法脱硫脱硝吸收液制备过硫酸铵进行资源化回收的可行性,在板框式隔膜流动电解槽中考察了硫酸铵浓度、硫氰酸铵浓度、硫酸浓度、温度、电流密度、流速、电解时间以及吸收液中杂质成分等工艺参数对电解制备过硫酸铵的影响特性。结果表明,吸收液中的尿素和氨水对电流效率有抑制作用,而SO32-和NO3-对电流效率几乎没有影响,模拟吸收液的电流效率仅为69.88%,远低于单一电解硫酸铵溶液86.98%的电流效率。对吸收液采取去除尿素、亚硫酸根氧化和吸收液pH调节(pH=2.2)预处理后,其电流效率达到85.12%。氨基湿法脱硫脱硝吸收液电解工艺不仅可高效制备过硫酸铵,阴极还可副产氢气,电解结晶后余液进一步与氨基湿法脱硫脱硝循环吸收液耦合,还可较大提升烟气脱硝效率,是一种新型的绿色高效的烟气净化技术路线,具有极大的发展前景。  相似文献   

11.
Fe2+液相催化氧化脱除烟气中SO2   总被引:5,自引:0,他引:5  
提出了一种烟气脱硫新工艺。实验选用水作脱硫剂 ,在只以Fe为催化剂的条件下进行。加入吸收液槽中的铁屑可与脱硫产生的稀硫酸进行反应 ,不仅可维持较高的吸收液pH值 ,而且产生的Fe2 + 引发了液相催化氧化SO2 反应。连续运行实验结果表明脱硫过程在不同阶段分别受SO2 溶解、Fe2 + 液相催化氧化SO2 反应、气相中SO2 扩散和铁屑与酸反应控制。吸收液中Fe2 + 质量浓度的变化和初始Fe2 + 质量浓度对脱硫率及吸收液pH值影响显示 ,可直接由清水制取高浓度硫酸亚铁溶液。实验还调查了SO2 入口质量浓度、液气比、空塔气速和吸收温度对脱硫率和吸收液pH值的影响  相似文献   

12.
筛板塔Fe/Cu湿式催化氧化脱除H2S气体制硫磺的实验   总被引:2,自引:1,他引:1  
张俊丰  童志权 《化工进展》2006,25(6):687-690
阐述了筛板塔Fe/Cu湿式催化氧化脱除H2S气体制硫磺流程,考察了操作空塔气速、液气比、起始pH值和H2S入口浓度对H2S脱除效率的影响及鼓风量、液柱高度对Fe3氧化再生的影响;并进行了综合实验。结果表明,含120g/L的Cu2+70g/L的Fe2+70g/L的Fe3+的吸收体系即能对体积分数为1000×106的H2S废气近100%稳定脱硫,流程简短、能耗低,体系除消耗O2外,过程不消耗原料,不产生二次污染,体系无降解问题。  相似文献   

13.
研究了粉煤灰合成沸石处理含Cr^3+废水的性能以及其它几种竞争性阳离子的影响。合成沸石对低浓度(〈100 mg/L)含Cr^3+废水具有良好的去除效果,去除效率达94%以上。当废水中存在其它阳离子(NH+4、Na+、K+、Ni^2+和Ca^2+)时,即使其阳离子浓度(以me/L计)达Cr3+的4倍,合成沸石对Cr^3+仍表现出了较高的选择性,Cr^3+去除效率基本未受影响。对于成分复杂的实际含Cr^3+的制革废水,当合成沸石投加量大于5 g/L时,对Cr^3+去除率高达99%以上,处理后废水中的Cr^3+浓度低于国家规定Cr^3+排放限值。因此,粉煤灰合成沸石在处理含Cr^3+废水方面具有良好的应用前景。  相似文献   

14.
周先桃  王依谋  马良  刘安林  何梦雅 《化工进展》2016,35(12):4053-4059
在传统的除雾型旋风分离器基础上进行改进,使其同时具备液相射流、气液吸收反应以及气液分离功能,并将这一新型旋风分离器用于烟气脱硫实验。实验中气相为含SO2烟气,液相为NaOH或Na2CO3碱液吸收剂,通过调节吸收剂浓度、烟气含硫浓度、烟气喷射速度、吸收剂喷射速度、吸收剂固含率等参数得到其相应脱硫率的变化。实验研究表明:脱硫率随吸收剂浓度的增加先增加,达到一定浓度后脱硫率几乎不变;脱硫率随SO2进口浓度的升高而下降;随进口气速的增大,脱硫率也一定程度增大;随液体喷射速度的增加脱硫率先增大,增大到一定程度后脱硫率趋于不变;NaOH作为吸收剂所得最佳脱硫率可达85%,Na2CO3作为吸收剂,最佳脱硫率可达77%;当其他参数一定时,加入一定量的CaCO3固体微粒,可以提高脱硫效率1%~2%。该液相射流吸收耦合气相旋流分离装置不仅脱硫效率高,而且脱硫剂损失少,投资成本与运行维护费用均低于相同处理量的烟气脱硫塔,具有良好的应用前景。  相似文献   

15.
基于湿法脱硫技术的钢渣脱硫剂性能研究   总被引:2,自引:0,他引:2  
开发了以钢渣作为一种新型的脱硫剂,利用旋流板塔作为吸收器的湿法脱硫技术。实验研究了钢渣中的主要成分对脱硫效果的作用;讨论了液气体积比、吸收浆液的pH值、气体中SO2的进口体积分数等主要操作参数对脱硫效率的影响。实验结果表明,钢渣浆液质量分数为2%,进口气体温度为20℃,液气体积比大于4.85的条件下,脱硫率可达到85%以上,钢渣中的MgO,Fe2O3对于脱硫效果具有促进作用。因此,钢渣在旋流板塔湿法脱硫过程中,是一种有效的脱硫剂。  相似文献   

16.
玉米芯活性炭的制备及其吸附性能的实验研究   总被引:1,自引:0,他引:1  
以玉米芯为原料,磷酸为活化剂制备玉米芯活性炭。当浸渍比(H3PO4:玉米芯)为3时,在400℃活化90min后,玉米芯活性炭对亚甲基蓝溶液的脱色率和收率最好。吸附剂对于含铅废水具有良好的吸附性能。当废水的pH为5,溶液的初始浓度为40mg/L,吸附剂投加量为0.2g,吸附时间为120mm时,其去除率高达90%左右。研究对利用废旧农作物制备活性炭具有一定的应用前景。  相似文献   

17.
燃气电厂利用稳定、清洁的化石能源发电,在“双碳”背景下发电过程产生的低浓度CO2的捕集和资源化利用,对于实现碳中和至关重要。针对低浓度CO2捕集难度大、脱附费用高的问题,利用CO2吸收液同步培养微藻产油提供了一种实现低浓度CO2捕集与资源化利用于一体的新途径。具有高CO2捕集能力和同时快速培养微藻能力的吸收液是溶液设计和配制的决定性因素。本文总结了现有吸收液的应用现状,梳理出复合吸收液耦合微藻营养调控的碳捕集发展前景,其中吸收液的碱度和盐度对微藻同化CO2具有显著影响。讨论了在不同温度和光照的工艺条件对微藻生物转化CO2的影响,阐述了CO2气体以微孔鼓泡和气升导流的方式通入反应器对CO2捕集和微藻生长的不同效果。从促进微藻吸收CO2同步产油的角度,介绍了藻种诱变驯化和基因改造以提升环境适应性同时增强脂质生产的研究进展,最后通过经济分析展望了规模化应用吸收-微藻法的经济可...  相似文献   

18.
研究竹炭对汞、铅混合溶液中的Hg^2+和Pb^2+的吸附行为。结果表明竹炭能同时吸附混合溶液中的Hg^2+、Pb^2+在pH值3.2—6.2的范围内,竹炭对溶液中的汞和铅均有较大的吸附能力,最佳的吸附pH值为5.9;吸附平衡时间为270min;在一定的实验条件下,随着混合溶液中被吸附离子的浓度增大,吸附量增大,但吸附率减小;随着竹炭投放量的增大,吸附量减小,但去除率增大。合适的吸附剂用量,能完全有效的除去混合溶液中的汞和铅。竹炭对混合溶液中汞和铅的吸附行为分别遵守Freundlich等温方程。  相似文献   

19.
H2O2脱硝技术是面向燃煤烟气净化过程的环境友好型治理工艺。本文以江苏某热电厂燃煤烟气为处理对象,在自制鼓泡反应器上考察了H2O2浓度、pH值、NOx初始浓度、温度等因素对H2O2脱硝性能的影响,初步探讨不同类型吸收剂吸收H2O2氧化后烟气的工艺可行性。研究表明,H2O2浓度为50%、pH=3、T=363 K、NOx初始浓度为450~500 mg/m3时,脱硝效率可达到43.96%。当燃煤烟气经过50%H2O2溶液氧化之后,分别采用5%尿素、吸收塔浆液和水进行吸收,起始脱硝效率依次为56.91%、51.77%和50.12%。随着时间的延长,脱硝效率随之逐渐下降。在5%尿素溶液中加入乙二胺,可明显减缓脱硝效率下降趋势。  相似文献   

20.
采用Na2CO3溶液在填料塔中分别吸收高、低浓度H2S气体,通过测定总体积传质系数(KGa),采用基于Box-Behnken设计的响应面分析方法研究吸收液流量、浓度和气体流量对KGa的影响,建立了Na2CO3溶液吸收高、低浓度H2S的二次响应曲面模型. 结果表明,在高、低H2S吸收体系中,各因素对KGa的影响规律基本一致,在低浓度H2S吸收体系中对KGa的影响更大. KGa与3个因素之间不是简单的单调函数关系,吸收液流量和浓度具有较强的相互增效作用. 处理H2S浓度为2.16%(j)、气体流量为720 L/h的体系时,当吸收液浓度为0.082 mol/L、其流量为11.28 L/h时,KGa最大;处理H2S浓度为20.1%(j)、气体流量为720 L/h的体系时,吸收液浓度为0.764 mol/L、其流量为11.28 L/h时,KGa最大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号