首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
There is a strong mechanical influence on the growth of electrical trees in electrical insulation resins. This is not to argue that electrical treeing is exclusively a mechanical phenomenon directly analogous to mechanical cracking. It is obviously an electrically driven process; no volts, no trees. Nevertheless, the mechanical dimension is of sufficient importance for its effects to be exploited to advantage using the prestressing technique. The effect that post-curing at 100°C has on the development of prestress, and on the ability of the cured sample to retain its prestress as the temperature is raised, has both positive and negative aspects. On the down side, material cured at 100°C requires a greater tension to be applied to the fibers during the casting process in order to achieve the same degree of prestress. On the other hand, the increase in the glass transition temperature from 65°C to 113°C permits the use of the composite at temperatures up to 80°C before any significant loss of prestress occurs, as compared with 40°C for material cured at room temperature. As an additional bonus, there is an enhancement of the mechanical strength resulting from the inclusion of cast-in fibers, which is important where the electrical insulation also acts as a structural member in the insulation system  相似文献   

2.
For several years it has been apparent that the mechanical characteristics of insulating materials have a pronounced influence on their electrical breakdown by treeing. As a consequence of this discovery, it is possible to look again from a different perspective at the treeing behavior in materials containing fillers and barriers. The effect of temperature on treeing can be interpreted in terms of the effect of temperature on the various mechanical properties of the material, and of any particulate or solid barrier inclusions. The internal mechanical stresses produced in resin samples containing cast-in metallic electrodes can affect treeing behavior both positively and negatively, depending on whether this stress in the material is tensile or compressive. In the light of this experience it has been found possible to enhance the treeing resistance of electrical insulation by using these mechanical effects in the most advantageous way, viz. by mechanically prestressing the material by the inclusion of fibers in tension; a method which is akin to that employed in the prestressing of concrete  相似文献   

3.
Using two hexagonal samples of ice, polycrystalline and single-crystalline, the electrical treeing has been investigated under an applied impulse voltage. The crystallinity and temperature of the ice play an important role in the events of the treeing. In the single-crystalline ice, the tree in the samples at -25 /spl deg/C always progressed along the basal plane of the ice crystal, but at -196 /spl deg/C, it progressed along the c-axis. These distinctive patterns of the tree progression were attributed to the crystal axis dependence on the electrical conductivity and the relative permittivity at each temperature. The current accompanying the trees were detected by means of an electro-optic coupling with light emitting diodes and photodiodes. After the large current pulses which occur just after voltage application, small intermittent current pulses were visible in the wave tail of the applied voltage. These intermittent pulses appear to generate by the movement of accumulated charges after the formation of tree channels. The electrical breakdown strength of ice at -25 C was large for the electric field parallel to the c-axis of the single-crystalline ice.  相似文献   

4.
By sequential use of the isothermal charging, the isothermal discharging, the final thermally stimulated discharge current and the final isothermal discharging current techniques, the charge dynamics in highly insulating materials may be investigated. The method is demonstrated for polyethylene terephthalate. The injected charge for a field of 20 MV m/sup -/1 and polarization temperatures up to 110/spl deg/C is almost totally trapped in the material and is released during the heating of the sample at 180/spl deg/C for a sufficiently long time. A significant current at high temperatures, about 90/spl deg/C above the poling temperature, was observed proving that it originates from charge detrapping. The final thermally stimulated discharge current peaks shift to higher temperature when the polarization temperature increases, and are characterized by activation energies in the range from 1.03 to 1.56 eV. They allowed the identification of the glass transition around 114/spl deg/C. The relaxation time of the trapped charge, at 180/spl deg/C, was determined to be about 3780 s, explaining the very good stability of trapped charge.  相似文献   

5.
Growth of electrical trees under 50 Hz high electric stress has been studied in a clarified propylene/ethylene copolymer, to explore the effects of the applied field and the material microstructure. Crystallization of the copolymer at low temperatures (<128°C) produces a continuous lamellar texture and the material consequently is optically transparent. At higher crystallization temperatures (134°C), more sporadic nucleation occurs and, as a result of the larger scale structural features that develop, the material becomes optically scattering. Nevertheless, CCD images of evolving tree structures could be obtained in both systems. Electrical treeing was found to occur reproducibly, but in a markedly different manner in the two morphologically different but chemically identical materials. In the low temperature crystallized copolymer, electrically conducting tree structures were found to develop with a growth rate that increased monotonically with increasing applied voltage. Conversely non-conducting tree structures formed in the 134°C crystallized copolymer that mimic the well documented decreasing tree growth rate with increasing applied voltage behavior of both low density polyethylene and a flexible epoxy resin  相似文献   

6.
This paper uses a rotating-beam-sensor structure to show that the extrinsic stress from the mismatch in expansion coefficient between the aluminum and the silicon substrate dominates over the compressive stress from the sputter growth. Sintering the layers at temperatures above 150/spl deg/C reduces this compressive stress due to the action of creep. Calibration of the rotation of the device has been undertaken by direct comparison to high resolution X-ray-diffraction measurements and these show that the sensor has a resolution better than 2.8 MPa. Furthermore, we have used the sensor to investigate the variation of in-plane stress with the compliance of the intermetal dielectric, by directly comparing sensors fabricated on SiO/sub 2/ and polyimide layers.  相似文献   

7.
温度对聚乙烯水树枝老化特性的影响   总被引:2,自引:2,他引:0  
为研究温度对PE水树枝老化特性的影响,选用低密度聚乙烯(LDPE)、过氧化物(DCP)交联聚乙烯(XLPE)作为试验材料。在室温(20°C)、40°C、60°C、80°C 4个温度下,采用水针电极法培养水树枝,用金相显微镜观测水树枝形态,并统计水树枝尺寸和引发率。研究发现,在60°C以上,温度对PE水树枝老化特性影响显著;水树枝的引发率随温度的升高先减小后增大;水树枝的尺寸随温度的升高总体呈现增大的趋势;LDPE和XLPE的试验得到类似的结果,但XLPE的抗水树枝老化性能优于LDPE。同时研究发现,随温度的升高,材料的力学性能大幅下降。经分析认为,交联限制大晶块的形成,使材料的力学性能增强,是XLPE抗水树枝化性能优于LDPE的两个主要原因;高温下两种材料力学性能下降、微孔膨胀、水分和盐离子的加速扩散是高温下水树枝劣化加速的主要原因。  相似文献   

8.
Electrical treeing in high voltage cable insulation has been studied widely as it is one of the major breakdown mechanisms for solid dielectrics subjected to high electrical stresses. The most frequently experimental set-up used to study electrical treeing is utilizing needles to achieve a high divergent field to promote the initiation of electrical trees. In this paper a new type of electrode configuration is described, which will be beneficial when examining electrical treeing in terms of both the capability to follow the course of events in real time and the small amount of insulation material is needed. This new electrode configuration makes use of a thin tungsten wire as electrode to obtain the high divergent electrical stress needed to initiate electrical trees. Multiple electrical trees are at times formed at different points along the wire during the testing, this indicates that the field are homogenous along the wire. This allows for determining the tree initiation field and the rate of tree growth. It is also shown that this electrode configuration is able to distinguish the increased electrical tree inception obtained by the addition of voltage stabilizers.  相似文献   

9.
Low-density polyethylene (LDPE) is used widely as an electric insulating material in electric power cables. The generation of electrical treeing due to aging of LDPE may lose the reliability of its insulating capability. Therefore it is important to suppress its treeing and to improve its electrical properties so that the reliability of cables can be improved. For this purpose, the authors prepared LDPE to which various inorganic materials were added. This investigation focuses particularly on lithium carbonate and quartz which were effective in suppressing the treeing when added to LDPE. Lithium carbonate-added (0.25 phr) LDPE in two hours of discharge showed the tree length 150 μm shorter than that (560 μm) of nonadded LDPE, exhibiting an obvious suppressing effect on treeing generation. It was found that this effect was more significant than quartz-added LDPE and even at elevated temperatures lithium carbonate-added LDPE exhibited suppression of treeing. The thermal decomposition temperature at which lithium carbonate-added (1 phr) LDPE loses 50 percent of its weight rose 100°C more than nonadded LDPE and 60°C more than that of quartz-added LDPE, which showed improvement in heat resistance of LDPE.  相似文献   

10.
In this paper, the epoxy elasticity factors were investigated by thermomechanical analysis (TMA), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA) and field emission scanning electron microscope (FESEM) to improve toughness and reduce brittleness of existing epoxy resin. Dumbbell shaped specimens were made and tested at rates of 0, 20 and 35 parts per hundred resins (phr). TMA and DMTA temperatures ranged from -20 to 200 /spl deg/C and TGA ranged from 0 to 600 /spl deg/C. The glass transition temperature (Tg) of elastic epoxy was measured by thermal analysis. Also investigated were the thermal expansion coefficient (/spl alpha/), the high-temperature characteristics, modulus and the loss factor (Tan /spl delta/). We analyzed the structure using FESEM and have found elastomer particles (elastic-factors) in the elastic epoxy matrix. We have made elastic epoxy by adding elastomer particles to existing epoxy. Generally, the toughness of elastic epoxy can be improved by changing the structure of existing epoxy of poor impact-strength. In addition, we measured the permittivity and Tan /spl delta/ for investigation of the electrical properties of elastic epoxy. The permittivity and Tan /spl delta/ depend on the elastomer composition. Namely, the permittivity and Tan /spl delta/ increase according to the elastomer contents. For experimental analysis results, 20 phr was considered an excellent specimen.  相似文献   

11.
Engineering Polymers are very good candidates for applications requiring mechanical properties comparable with metals, chemical inertia, high insulation capability, high temperature operation and ultra high vacuum (UHV) compatibility. The results of a systematic test series, aimed at qualifying the engineering resins VESPEL/spl reg/ SP1, PEEK and CELAZOLE/spl reg/ PBI as UHV seals, are reported. The study of the materials behavior has been carried out over a wide temperature interval, ranging from 20 to 400/spl deg/C. In addition to the tightness and permeation tests, thermal desorption and gas chromatographic-mass spectrometer (GC/MS) analysis have also been performed. The results obtained indicate that CELAZOLE/spl reg/PBI provides the best performance, since it can be operated safely up to 375/spl deg/C, without giving any sign of leak or other drawbacks. PEEK, on the contrary, does not stand temperatures higher than 275/spl deg/C but, below this limit, it remains a very cost effective and reliable alternative. VESPEL/spl reg/ SP1, in its turn, can be operated safely up to 325/spl deg/C but above this temperature its properties start to degrade even if not in an abrupt manner as is the case for the other two resins. The possible applications of some of these polymers in the field of nuclear fusion research are also briefly described.  相似文献   

12.
In this study, laser reshaping of porcine septal cartilage was performed using an Nd:YAG laser (/spl lambda/=1.32 /spl mu/m), while changes in acoustic waves were observed, in an attempt to develop technique to monitor the reshaping process. Concurrent measurements of strain (during tensile compression and tension, as well as flexure), temperature, and a 5-MHz ultrasonic signal were recorded during laser irradiation (/spl lambda/=1.32 /spl mu/m, 4 W, 13 s). The sample was set up in a water bath to enhance acoustic coupling. From the ultrasonic signal, both time of flight (TOF) and signal amplitude as reflected from the back wall of the cartilage were extracted and correlated with temperature and strain measurements. The onset of stress relaxation of the cartilage generally occurred between 50/spl deg/C and 60/spl deg/C. While TOF measurements indicated a generally constant increase in the speed of sound of the cartilage during the irradiation period, the amplitude of the reflected acoustic signal correlated directly with the stress relaxation of the cartilage. At the point of stress relaxation, the amplitude of the acoustic signal consistently attenuated to roughly 50% of its original magnitude.  相似文献   

13.
The thermomechanical stresses due to mismatch of the coefficients of thermal expansion (CTE) of the base material (SiC) and the packaging has a significant impact on the stresses in MEMS pressure sensors used in high-temperature applications, to 600/spl deg/C. The pressure sensor studied essentially consists of a SiC die attached to an AlN substrate using a gold die attach. Characterization of the stress distribution within the die attach, die and substrate along with the fatigue resistance of the die attach at 600/spl deg/C is essential to estimating the reliability of the packaging structure. A parametric study has been performed using nonlinear finite element analysis to optimize the die-attach thermomechanical performance at high temperatures. This study includes the effects of varying porosity levels and varying reference temperatures (stress-free temperature). This study also provides information about the mechanical deformations of the pressure sensor due to the thermomechanical load, which must be compensated, for the effective performance of the pressure sensor. The outcome of the study provides guidelines to optimize the design of the pressure sensor.  相似文献   

14.
Extruded films prepared from blends of low-density polyethylene (LDPE) and random copolymer of ethylene and propylene (EP) with the T-die method were studied with respect to electrical properties and morphology. Comparisons with data on blown films are made. These blends are of interest as improved LDPE for making XLPE for insulated power cable. In the high temperature region (90/spl deg/C), a specimen with a slightly higher EP content had higher impulse breakdown strength than that with a lower EP content, but no improvement of DC breakdown strength by blending could be found. The improvement of impulse breakdown strength (90/spl deg/C) is explained in terms of morphological changes by blending such as the orientation of chains in a film and the size of spherulites on the assumption of the thermal breakdown. In comparison, a T-die film had higher impulse breakdown strength than that of a blown film for the same composition. The impulse breakdown strength also increased with the use of the higher density LDPE. In the current versus electric field characteristics at 30/spl deg/C, the blend polymer with EP content of 5-10% showed a transition from LDPE behavior at low field region to EP behavior at high field region. However, no appreciable difference in current behavior among the specimens was observed at 90/spl deg/C, which suggests an incompatibility between the two materials that exists at 30/spl deg/C but not at 90/spl deg/C.  相似文献   

15.
The authors have proved that ethylene-propylene rubber (EPR) is suitable for the solid electrical insulating material of superconducting and cryoresistive cables due to its excellent mechanical and good electrical properties. It is imperative to study the treeing resistivity of EPR in view of long-term reliability as a cable insulator. The objectives of this paper are to establish an ac treeing test method of opaque EPR samples with fillers and to examine the treeing resistivity of EPR at both liquid-nitrogen and room temperatures and the effect of fillers on treeing resistivity. It was found that EPR has enough resistance to ac treeing at liquid-nitrogen temperature and that fillers improve ac treeing resistivity slightly. High reliability of EPR insulation is expected during long-term operation at cryogenic temperature.  相似文献   

16.
Power systems for military aircraft must tolerate extreme conditions: temperatures as low as -40/spl deg/C or as high as 70/spl deg/C, as well as short-term fluctuations from -55/spl deg/C to 180/spl deg/C; relative humidity as high as 100%; impacts reaching 60G. Difficult conditions can be tackled by using suitable materials and enclosure designs, but a system or unit's weight, size and shape are often governed by its location. These challenges are just the beginning. System reliability and availability are paramount as failures must be minimised at all times. To provide a reliable and safe power system for today's military aviators, many design teams are needed to tackle the architectural, electrical, mechanical and chemical parameters of power units. Exploiting emerging technical innovations, such as high-performance FETs, can only make life easier for designers of the future.  相似文献   

17.
高频下电树老化引起的高密度聚乙烯击穿现象   总被引:1,自引:1,他引:1  
为了分析高频下电树老化引起的高密度聚乙烯击穿现象,实验研究了冰水淬火高密度聚乙烯(HDPE)薄膜在频率50 Hz~90 kHz范围内的交流电压作用下电树老化引起的破坏现象及电树生长过程中的电树形态特性的变化。观测高频下树老化引起击穿过程中电弧运动发现:不同频率下HDPE薄膜中电树生长过程中存在树枝、树干、丛状和击穿型4种基本电树形态;在高频下不同电树形态存在形态转换的关系,且随着频率和电压的升高,相同条件下电树老化引起的击穿破坏概率大大增加。试验结果表明,在较高频率下树的形态易向击穿型发展。最后从高频电压对材料极化过程的影响及高频所引起的材料疲劳效应、热效应加剧角度出发,对在高频下电树老化易于引发击穿的特性展开了深入的讨论,解释了高频或中频电气设备易发生绝缘老化破坏的现象。  相似文献   

18.
Using a recently developed procedure combining isothermal and nonisothermal current measurements space charge trapping and transport in LDPE was successfully studied. Unaged, thermally and electrically aged samples were investigated. The samples were conditioned before each measurement in order to obtain reproducible results. In the nonisothermal measurements appeared a broad peak (40/spl deg/C to 50/spl deg/C) that was possible to decompose into two or three peaks (35, 45 and 65/spl deg/C). At even higher temperature another peak was sometimes present (85/spl deg/C) depending on the prior sample conditioning. The space charge is trapped near the surface in deep traps (maximum depth of /spl ap/15 /spl mu/m). Relaxation times, mobilities and activation energies have been calculated for different charging/discharging conditions. For unaged samples the reproducibility of the results was poor while for the aged polyethylene it was quite good, meaning that aging helps conditioning. In the electrically aged LDPE there is a decrease of conductivity and the broad peak of the nonisothermal spectra shows a slight shift towards higher temperatures when compared with the data found in the thermally aged polymer.  相似文献   

19.
We report on the development of a silicone modified unsaturated polyester (SUP) using a novel combination of well known principles and rigorous calculation and control of mole fraction to produce what we believe the first SUP varnish which can be used in all insulation systems including those requiring application in vacuum (solvent free, single component). Silicone modified polyesters are available but not in solvent free and unsaturated varnish form and their chemistry is different. We believe that the nature of the chemical structure generated by the manufacturing protocol is critical to the properties of the cured SUP varnish. The properties of SUP are consistently better than those of unsaturated polyesters (UP) with respect to chemical resistance as defined by ASTM tests to moisture, acids, bases, toluene, transformer oil and silicone oil. IEC comparative tracking resistance was 300 drops vs 160-240 for UPs. Results of electrical properties vs temperature tests and heat deflection temperature suggested application to high voltage electric motors and other high temperature uses. Heat aging stability of bond strength of SUP treated helical coils was tested for tensile strength (ts) (using Stecker) and for flexural strength (fs) to determine the temperature index (TI) of the varnish alone. The end point was taken to be 14 kgf (50% loss for both ts and fs). Also, motorettes insulated with materials of high temperature class were treated with SUP for TI evaluation. The TI on a motorette was sufficient (208/spl deg/C) to suggest application at 200/spl deg/C rating level (20,000 h level). The TIs of helical and Stecker coils were 194 and 193/spl deg/C, respectively. The literature values of TIs of UPs on motorettes with similar insulating materials never exceeded 180/spl deg/C. These properties are consistently better than the properties of conventional unsaturated polyester.  相似文献   

20.
The outstanding space charge storage stability of porous polytetrafluoroethylene (PTFE) film electrets is studied by isothermal surface potential decay measurements and open-circuit thermally stimulated discharge (TSD) experiments after corona charging at room and elevated temperatures, or corona charging at RT and then aging at different temperatures. Charge storage properties of porous PTFE, nonporous PTFE (Teflon/spl reg/ PTFE) and nonporous FEP (Teflon/spl reg/ FEP) electrets are compared. The results show that porous PTFE has the best charge storage stability of organic materials for both negative and positive charges, especially at high temperatures. The structure of porous PTFE, investigated by a scanning electron microscope (SEM), is important for understanding the electret properties of this material. Charge dynamics, including the influence of environmental humidity and temperature on charge stability and shift of mean charge depth, and the kinetics of detrapped charges for the porous PTFE film electrets were also investigated by means of isothermal surface potential decay measurements and analysis of the TSD current spectra in combination with the heat pulse technique. It is found that from about RT to 200/spl deg/C slow retrapping plays a dominant role; from about 200/spl deg/C to 300/spl deg/C fast retrapping controls the transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号