首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The crystallization of a multicomponent glass containing 1.63 wt% of F anions was studied. The results show in powder glass with particle sizes less than 0.15 mm, that surface crystallization is dominant, whereby two phases: leucite and dioside are formed. In glass powder or particle size about 0.15 mm, three phases, phlogopite, diopside and leucite, are formed, accompanied by an abrupt decrease in the resistance of the glass to crystallization. If the particle sizes are in the range 0.15 to 0.45 mm, both surface and volume crystallization are significant, while with particle sizes >0.45 mm, volume crystallization is dominant. Two nucleation temperatures, T n1 = 655°C and T n2 = 675°C, were determined in the temperature range of 600–710°C. These temperatures satisfy the condition that T n T g . Crystallization of bulk glass occurs in the temperature range of T c = 870–1100°C, the crystal phases appearing in the sequence: phlogopite, followed by diopside, followed by leucite. Kinetical and microstructural studies show that the crystallization process is controlled by volume diffusion.  相似文献   

2.
Preliminary results are reported of three-point plastic bending tests on Cd x Hg1–x Te single crystal samples, for an x value of about 0.2, conducted in air at strain rates of the order of 10–5 sec–1, and at temperatures in the range 303 K (30° C) to 363 K (90° C) (in the region of 0.35T m 0 , where T m 0 is the absolute melting point). Single crystal samples were cut from polycrystalline ingots, and the orientation, although measured in each case, was not consistent from sample to sample, being determined by the available grain shape. The stress-strain curves resemble those found for Group IV and III–V semiconductors. They display a yield drop, followed by a region of zero work hardening. All tests were stopped in this region, and in no case did the overall glide strain exceed 3%. The upper and lower yield stresses (outer fibre glide stress values) varied from 16 MN m–2 and 10 MN m–2, respectively, at 363 K (90° C) to 24 MN m–2 and 17 MN m–2, respectively, at 303 K (30° C).  相似文献   

3.
The d.c. electrical properties of some hot-pressed polycrystalline nitrogen ceramics have been measured between 18 and 500° C in applied electric fields up to 1.1×104 Vcm–1. The materials examined were Si3N4, 5wt%, MgO/Si3N4 and two sialons havingz=3.2 andz=4.0. The conduction in all the materials showed similar general features. The time dependent charging (I c) and discharging currents (I D) were observed which followed a I(t)t–n law at room temperature withn=0.7 to 0.8. The exponentn forI c decreased with increasing temperature. The current density-field (J s-E) characteristics were ohmic in applied fields of less than 3×103 Vcm–1; conductivity increased with electric field above that range. Above about 280° C, a was independent ofE, its temperature dependence following log T –1. Below about 230° C conductivity fitted a exp (–B/T 1/4) law in both low and high fields. There is a good correlation between the temperature and field variations of time dependent current and the steady current. The conductivities were in the range of 10–15 to 10–16–1 cm–1 at 18° C and rose to 4×10–10 to 2×10–12 –1 cm–1 at 500° C. The activation energies were in the range of 1.45 to 1.80 eV and 0.05 to 0.15 eV at above 300° C and near room temperature respectively. Various models to explain the data are considered.  相似文献   

4.
A series of three-point bend tests using single edge notched testpieces of pure polycrystalline ice have been performed at three different temperatures (–20°C, –30°C and –40°C). The displacement rate was varied from 1 mm/min to 100 mm/min, producing the crack tip strain rates from about 10–3 to 10–1 s–1. The results show that (a) the fracture toughness of pure polycrystalline ice given by the critical stress intensity factor (K IC) is much lower than that measured from the J—integral under identical conditions; (b) from the determination of K IC, the fracture toughness of pure polycrystalline ice decreases with increasing strain rate and there is good power law relationship between them; (c) from the measurement of the J—integral, a different tendency was appeared: when the crack tip strain rate exceeds a critical value of 6 × 10–3 s–1, the fracture toughness is almost constant but when the crack tip strain rate is less than this value, the fracture toughness increases with decreasing crack tip strain rate. Re-examination of the mechanisms of rate-dependent fracture toughness of pure polycrystalline ice shows that the effect of strain rate is related not only to the blunting of crack tips due to plasticity, creep and stress relaxation but also to the nucleation and growth of microcracks in the specimen.  相似文献   

5.
Ca doped NiCo2O4 spinel materials were synthesized by conventional solid state reactions at 900 °C. Thermoelectric properties of polycrystalline products were characterized at high temperature range of 800 °C in air. d.c. conductivity of the prepared polycrystalline 5 mol % Ca doped NiCo2O4 was about 60 S m–1 at 300 °C. The value of d.c. conductivity was increased with the temperature increasing. Thermoelectric voltage of polycrystalline Ni1–x Ca x Co2O4 (x=0–0.05) was positive at 300–800 °C, this showed p-type thermoelectric properties. The Seebeck coefficient of 5 mol % Ca doped NiCo2O4 was ca. 300 V/K at 600 °C. The value of the Seebeck coefficient of Ni1–x Ca x Co2O4 polycrystalline products decreased with the increasing temperature. Thermal conductivity of 5 mol % Ca doped NiCo2O4 was ca. 2.2 W m–1 K–1 at 600 °C. The estimated thermoelectric figure-of-merit, Z, of 5 mol % Ca doped NiCo2O4 spinel polycrystalline product was about 3.5×10–5 K–1 at 600 °C.  相似文献   

6.
Experiments are described in which the fracture toughness,K c, of PMMA has been determined in the temperature range –190 to + 80° C and over the crack speed range of 10–2 to 102 mm sec–1. Single edge notch tension was used for instability measurements but the other data were obtained using the double torsion method. In the range –80 to + 80°C the variations inK c may be described in terms of modulus changes and a constant crack opening displacement criterion. Crack instabilities are correlated with isothermal-adiabatic transitions at the crack tip. Below –80° C there is an inverted rate dependence associated with thermal effects during post-instability crack propagation.  相似文献   

7.
Rice hull was moulded into a tube (outer diameter: 54 mm; inner diameter: 17 mm, length: c. 170 mm) by use of an extruder and then carbonized in nitrogen atmosphere below 1000 °C. Ash content of the hull was 16 wt%, of which c. 94 and 4 wt% were SiO2 and K2O, respectively. Carbon yield and shrinkage of the mould after carbonization at 1000 °C were 42 wt%, and 43 vol%, respectively. The bulk density increased with rising of carbonization temperature to reach to 0.93 g ml–1 at 1000 °C via 0.82 g ml–1 at 500 °C. The largest compressive strength of 3.6 MPa was obtained after carbonization at 1000 °C. No micropore was developed after carbonization, and the total pore volume measured by a mercury porosimeter was 0.25–0.31 ml g–1 after carbonization. These data were compared with those of charcoal.  相似文献   

8.
Two sets of Al2TiO5-based composites were prepared by reaction sintering of (a) Al2O3/TiO2/ZrSiO4 and (b)Al2O3/TiO2/ZrSiO4/MgO powder mixtures. The influence of the variation of ZrSiO4 content (0 to 10wt%) and the addition of 2 wt% MgO on the reaction-sintering process, microstructure, mechanical and thermal properties, were evaluated. ZrSiO4 addition shifted the Al2TiO5 formation to higher temperatures, whereas MgO accelerated both Al2TiO5 formation and ZrSiO4 decomposition. The presence of ZrSiO4 and an excess of Al2O3 generated a dispersion of ZrO2 and mullite particles in the grain boundaries and enhanced simultaneously the densification process. After sintering in the temperature range 1350 to 1500 ° C, the obtained composites exhibited significantly higher bending strength than the monophasic aluminium titanate (up to 80 M Pa). Al2TiO5 (80wt%)-mullite-ZrO2 composites which combined good mechanical strength (55MPa), low thermal expansion (20–1000C < 1 × 10–6 K–1) and excellent thermal stability were obtained by reaction and sintering of powder mixtures containing both ZrSiO4 and MgO.  相似文献   

9.
Zirconium titanate (ZrTiO4) ceramics have been prepared by the mixed oxide route using small additions of ZnO, Y2O3 or CuO. Specimens were sintered mainly at 1400 °C and cooled at various rates: water-quench, air-quench, 300 °C h–1, 120 °C h–1, 6 °C h–1 and 1 °C h–1. Products prepared with additives exhibited densities of at least 93% of the theoretical value. As the cooling rate after sintering was decreased, the length of the lattice parameter in the b direction was reduced and transmission electron diffraction revealed superlattice reflections associated with cation ordering. For specimens cooled at 1 °C h–1, electron diffraction patterns exhibited features consistent with an incommensurate superstructure in the a direction. The dielectricQ value of rapidly cooled (air-quenched) ceramics was 2000 at 5 GHz. With an increase in the degree of cation ordering theQ value increased to a maximum of 4400 for specimens cooled at 6 °C h–1. For specimens cooled at the slowest rate (1 °C h–1) theQ value fell to 2000 due in part to the presence of microcracks and exsolved ZrO2. Diffusion of trivalent impurities (yttria) into the host ZrTiO4 grains also led to a lowering of theQ values.The microwave dielectric properties of zirconium titanate ceramics are sensitive to processing conditions and mircrostructural features. The highestQ values (lowest loss) should be achieved in homogeneous specimens, free of trivalent impurities and lattice defects, in which lowQ-value second phases, microcracks and pores are eliminated.  相似文献   

10.
Single crystals of HgTe and Cd x Hg1–x (0.18<x<0.30), oriented for single slip, have been deformed in four-point bending at strain rates 10–4 sec–1 and temperatures from –11 to +84° C for HgTe, and 20 to 195° C for Cd x Hg1–x Te. At the lowest temperatures, the stress-strain curve exhibits a sharp yield relaxation and subsequent zero work hardening regime, as commonly observed for other semiconductors. Experiments show that the yielding mechanism is that proposed by Johnston and Gilman for LiF. Possible explanations for the post-yield zero work hardening phenomenon are discussed. The influence of composition, temperature and strain rate on the stress-strain behaviour are reported. At 20° C, the upper and lower yield stresses ( uy and 1y ) increase with increasingx in qualitative agreement with our earlier hardness results. For Cd0.2Hg0.8Te, 1y varies with temperature,T, at a strain rate of 10–4 sec–1, according to 1y exp (Q/kT) whereQ is 0.16 eV. For HgTe the comparable value is 0.11 eV. Atx=0.25 and constant temperature, 1y depends on strain rate as 1y 1/n wheren is 4. The stress level for deformation of Cd0.2Hg0.8Te at 10–4 sec–1 and 20° C is 2–3 kg mm–2, comparable with that for InSb at 300° C or Si at 1000° C. Strain rate cycling tests on Cd x Hg1–x Te give values of activation volumeV* around 10b3 at 20° C, independent of plastic strain (up to 2–3%), suggesting that deformation in these alloys is controlled by the Peierls mechanism, as observed in other II–VI compounds.  相似文献   

11.
Orthorhombic kalsilite (KAlSiO4) was prepared by solid-state reaction from K2CO3, Al2O3, and SiO2. The axial thermal expansion coefficients of the orthorhombic kalsilite were 1.6×10–5°C–1 for the a-axis, 1.6×10–5°C–1 for the b-axis, 2.8×10–5°C–1 for the c-axis, and 2.0×10–5°C–1 for the average from room temperature to 1000°C. A high thermal expansion ceramic consisting of the orthorhombic kalsilite was prepared by sintering. The densification was promoted by adding Li2CO3. The KAlSiO4 ceramic sintered at 1200°C for 2 h with 5 wt% Li2CO3 had a bending strength of 65 MPa and linear thermal expansion coefficient of 2.2×10–5 °C–1 from room temperature to 600°C.  相似文献   

12.
Nucleation and crystal growth in a fly ash derived glass   总被引:3,自引:0,他引:3  
The devitrification behaviour of a fly ash derived glass, examined by differential thermal analysis (DTA), X-ray diffraction and scanning electron microscopy (SEM), is reported and discussed. The crystallized phases were identified as mullite (3Al2O3·2SiO2) and anorthite (CaO·Al2O3·2SiO2). Kinetic parameters for nucleation and crystal growth were estimated from the DTA curves. The temperature of maximum nucleation rate was 790°C and the activation energy for crystal growth E=370 kJ mol–1. The crystal morphology was investigated by SEM and the crystal shape found to be consistent with the morphological index n calculated by DTA. The glass-ceramic obtained from a previously nucleated glass showed a fine-grained texture.  相似文献   

13.
Bulk crystals of Ge1–xSi x alloys were grown by the Czochralski technique. Full single crystals were obtained for the alloys of composition 0 < x < 0.15 and 0.9 < x < 1, while single crystal parts near the seeds of ingots provided alloys of intermediate composition. The dislocation velocity and mechanical strength of the GeSi alloys were investigated by the etch pit technique and compressive deformation tests, respectively. In the GeSi alloys of the composition range 0.004 < x < 0.080 the dislocation velocity decreases monotonically with increasing Si content in the temperature range 450–700°C and the stress range 3–24 MPa. In contrast, in the composition range 0.94 < x < 1 the dislocation velocity first increases and then decreases with decreasing Si content in the temperature range 750–850°C and the stress range 3–30 MPa. The velocity of dislocations was determined as functions of stress and temperature. The stress–strain behaviour in the yield region of the GeSi alloys of composition 0 < x < 0.4 is similar to that of Ge at temperatures lower than about 600°C. However, the yield stress becomes temperature-insensitive at high temperatures and increases with increasing Si content. The stress–strain curves of the GeSi alloys of composition 0.94 < x < 1 are similar to those of pure Si at temperatures of 800–1000°C and the yield stress increases with decreasing Si content down to x = 0.94. The yield stress of the GeSi alloys is dependent on the composition, being proportional to x(1 – x). The strengthening mechanism in alloy semiconductors is discussed.  相似文献   

14.
The constitutive behaviour of — nickel silver in the temperature range 700–950 °C and strain rate range 0.001–100 s–1 was characterized with the help of a processing map generated on the basis of the principles of the dynamic materials model of Prasadet al Using the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by 2m/(m+1) wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, -nickel silver exhibits a single domain at temperatures greater than 750 °C and at strain rates lower than 1s–1, with a maximum efficiency of 38% occurring at about 950 °C and at a strain rate of 0.1 s–1. In the domain the material undergoes dynamic recrystallization (DRX). On the basis of a model, it is shown that the DRX is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb. At high strain rates (10 and 100s–1) the material undergoes microstructural instabilities, the manifestations of which are in the form of adiabatic shear bands and strain markings.  相似文献   

15.
The hot-working characteristics of the metal-matrix composite (MMC) Al-10 vol % SiC-particulate (SiCp) powder metallurgy compacts in as-sintered and in hot-extruded conditions were studied using hot compression testing. On the basis of the stress-strain data as a function of temperature and strain rate, processing maps depicting the variation in the efficiency of power dissipation, given by = 2m/(m+1), where m is the strain rate sensitivity of flow stress, have been established and are interpreted on the basis of the dynamic materials model. The as-sintered MMC exhibited a domain of dynamic recrystallization (DRX) with a peak efficiency of about 30% at a temperature of about 500°C and a strain rate of 0.01 s–1. At temperatures below 350°C and in the strain rate range 0.001–0.01 s–1 the MMC exhibited dynamic recovery. The as-sintered MMC was extruded at 500°C using a ram speed of 3 mm s–1 and an extrusion ratio of 101. A processing map was established on the extruded product, and this map showed that the DRX domain had shifted to lower temperature (450°C) and higher strain rate (1 s–1). The optimum temperature and strain rate combination for powder metallurgy billet conditioning are 500°C and 0.01 s–1, and the secondary metal-working on the extruded product may be done at a higher strain rate of 1 s–1 and a lower temperature of 425°C.  相似文献   

16.
The samples of the pseudobinary system (FePO4)1–x -(FeVO4) x with x=0–1 were prepared by precipitation from a solution of iron nitrate and ammonium phosphate/vanadate, and the evolution of their structure during the heating of the precipitate within the temperature range of 20–1000 °C was studied by thermal analysis, X-ray diffraction and infrared spectroscopy. The samples dried at 120°C were amorphous having a high specific surface area of 160–222 m2g–1 and their crystallization took place at 440–560 °C. The regions of solid solutions between the two boundary phases were smaller than 10 mol % of the second phase and a new crystalline phase was formed in the system at the composition of FePO4FeVO4=11.  相似文献   

17.
Single phase (Sr1–x K2x )Zr4(PO4)6, where x lies between 0.0 and 1.0, ceramic powder with a submicron scale particle size has been synthesized successfully at calcination temperatures as low as 650–750°C by a sol-gel technique. The formation of the powder strongly depends on calcination temperature, but is independent of solution pH in the studied range. Dilatometric measurement shows an ultra-low linear coefficient of thermal expansion of 0.1×10–6°C–1 when x=0.5 at temperature intervals of 25–1000°C. Thermal conductivity and flexural strength of the materials were determined at ambient temperature to be 1.0 Wm–1K–1 and as high as 280 MPa, respectively, indicating that this material can be an excellent candidate in many applications, especially those subjected directly to severe environments.  相似文献   

18.
Flux growth and characterization of TiC crystals   总被引:1,自引:0,他引:1  
Single crystals of TiC were grown using nickel and cobalt metal as a flux at soaking temperatures of 1500 to 1800° C and at compositions of 12.5 to 30 mol% TiC. The use of cobalt flux produced crystal sizes less than 0.5 mm under all conditions. With a nickel flux, a maximum crystal size of 1.5 mm was obtained at 1700 and 1800°C and at 20 and 25 mol% TiC composition, using a cooling rate of 3° C min–1. A slower cooling rate of 0.2° C min–1 also gave crystals of 1.5 mm at 1600° C. The crystals were cubic and metallic-lustre silver grey in colour. The lattice parameter of the crystal was measured to bea 0 = 0.432 75 ± 0.000 05 nm, with nearly stoichiometric composition. The grown faces were of the {1 0 0} family with a dislocation density around 107 cm-2. The Vickers' microhardness on these faces was in the range 2600 to 2800 kg mm–2. The nickel impurity and free carbon contents in the crystals were 700 to 1000 p.p.m. and 0.8 to 4 wt%, respectively.  相似文献   

19.
The directional solidification of Pb-Sn alloys   总被引:2,自引:0,他引:2  
Directional solidification experiments have been carried out on different Pb-Sn alloys as a function of temperature gradient G, growth rate V and cooling rate GV. The specimens were solidified under steady state condition with a constant temperature gradient (50 °C/cm) at a wide range of growth rates ((10–400) × 10–4 cm/s) and with a constant growth rate (17 × 10–4 cm/s) at a wide range of temperature gradient (10–55 °C/cm). The primary dendrite arm spacing, 1, and secondary dendrite arm spacing, 2, were evaluated. This structure parameters were expressed as functions of G, V and GV by using the linear regression analysis. The results were in good agreement with the previous works.  相似文献   

20.
Cation- and anion-substituted zirconium phosphates of X kZr m (PO4) ny Y composition, where X = Na+, La3+, NH4 +, Y = F, WO4 2–, 1/3 < k < 2, 2 < m < 4, 3 < n < 6 were synthesized by the procedure, including mechanical activation of the starting salts mixture followed by annealing at 300–900°C. The interaction between components was studied by XRD, EXAFS, FT–IR, [31P-MAS] NMR. The possibility of synthesizing nonstoichiometric compounds is demonstrated and prospects for application of the mechanochemical method for synthesis of complex zirconium phosphates are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号