首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solving Mixed and Conditional Constraint Satisfaction Problems   总被引:3,自引:0,他引:3  
Constraints are a powerful general paradigm for representing knowledge in intelligent systems. The standard constraint satisfaction paradigm involves variables over a discrete value domain and constraints which restrict the solutions to allowed value combinations. This standard paradigm is inapplicable to problems which are either:(a) mixed, involving both numeric and discrete variables, or(b) conditional,1 containing variables whose existence depends on the values chosen for other variables, or(c) both, conditional and mixed.We present a general formalism which handles both exceptions in an integral search framework. We solve conditional problems by analyzing dependencies between constraints that enable us to directly compute all possible configurations of the CSP rather than discovering them during search. For mixed problems, we present an enumeration scheme that integrates numeric variables with discrete ones in a single search process. Both techniques take advantage of enhanced propagation rule for numeric variables that results in tighter labelings than the algorithms commonly used. From real world examples in configuration and design, we identify several types of mixed constraints, i.e. constraints defined over numeric and discrete variables, and propose new propagation rules in order to take advantage of these constraints during problem solving.  相似文献   

2.
杨明奇  李占山  张家晨 《软件学报》2019,30(11):3355-3363
表约束是一种外延的知识表示方法,每个约束在对应的变量集上列举出所有支持或禁止的元组.广义弧相容(generalized arc consistency,简称GAC)是求解约束满足问题应用最广泛的相容性.Simple Tabular Reduction(STR)是一类高效的维持GAC的算法.在回溯搜索中,STR动态地删除无效元组,降低了查找支持的开销,并拥有单位时间的回溯代价,在高元表约束上获得了广泛运用,并有大量基于STR的改进算法被提出,其中,元组集的压缩表示是目前研究较多的方法.同样基于动态维持元组集有效部分的思想,为STR提出一种检测并删除无效元组和为变量更新支持的算法,作用于原始表约束并拥有单位时间的回溯代价.实验结果表明,该算法在表约束上维持GAC的效率普遍高于现有的非基于压缩表示的STR算法,并且在一些实例上的效率高于最新的基于元组集压缩表示的STR算法.  相似文献   

3.
k-consistency operations in constraint satisfaction problems (CSPs) render constraints more explicit by solving size-k subproblems and projecting the information thus obtained down to low-order constraints. We generalise this notion of k-consistency to valued constraint satisfaction problems (VCSPs) and show that it can be established in polynomial time when penalties lie in a discrete valuation structure.A generic definition of consistency is given which can be tailored to particular applications. As an example, a version of high-order consistency (face consistency) is presented which can be established in low-order polynomial time given certain restrictions on the valuation structure and the form of the constraint graph.  相似文献   

4.
We provide a reformulation of the constraint hierarchies (CHs) framework based on the notion of error indicators. Adapting the generalised view of local consistency in semiring-based constraint satisfaction problems, we define constraint hierarchy k-consistency (CH-k-C) and give a CH-2-C enforcement algorithm. We demonstrate how the CH-2-C algorithm can be seamlessly integrated into the ordinary branch-and-bound algorithm to make it a finite domain (FD) CH solver. Experimentation confirms the efficiency and robustness of our proposed solver prototype. Unlike other FD CH solvers, our proposed method works for both local and global comparators. In addition, our solver can support arbitrary error functions.  相似文献   

5.
Many temporal applications like planning and scheduling can be viewed as special cases of the numeric and symbolic temporal constraint satisfaction problem. Thus we have developed a temporal model, TemPro, based on the interval Algebra, to express such applications in term of qualitative and quantitative temporal constraints. TemPro extends the interval algebra relations of Allen to handle numeric information. To solve a constraint satisfaction problem, different approaches have been developed. These approaches generally use constraint propagation to simplify the original problem and backtracking to directly search for possible solutions. The constraint propagation can also be used during the backtracking to improve the performance of the search. The objective of this paper is to assess different policies for finding if a TemPro network is consistent. The main question we want to answer here is how much constraint propagation is useful for finding a single solution for a TemPro constraint graph. For this purpose, we have experimented by randomly generating large consistent networks for which either arc and/or path consistency algorithms (AC-3, AC-7 and PC-2) were applied. The main result of this study is an optimal policy combining these algorithms either at the symbolic (Allen relation propagation) or at the numerical level.  相似文献   

6.
This article introduces a new filtering algorithm for handling systems of quadratic equations and inequations. Such constraints are widely used to model distance relations in numerous application areas ranging from robotics to chemistry. Classical filtering algorithms are based upon local consistencies and thus, are often unable to achieve a significant pruning of the domains of the variables occurring in quadratic constraint systems. The drawback of these approaches comes from the fact that the constraints are handled independently. We introduce here a global filtering algorithm that works on a tight linear relaxation of the quadratic constraints. The Simplex algorithm is then used to narrow the domains. Since most implementations of the Simplex work with floating point numbers and thus, are unsafe, we provide a procedure to generate safe linearizations. We also exploit a procedure provided by Neumaier and Shcherbina to get a safe objective value when calling the Simplex algorithm. With these two procedures, we prevent the Simplex algorithm from removing any solution while filtering linear constraint systems. Experimental results on classical benchmarks show that this new algorithm yields a much more effective pruning of the domains than local consistency filtering algorithms.*This article is an extended version of [23].  相似文献   

7.
Constraint satisfaction problems can be solved by network consistency algorithms that eliminate local inconsistencies before constructing global solutions. We describe a new algorithm that is useful when the variable domains can be structured hierarchically into recursive subsets with common properties and common relationships to subsets of the domain values for related variables. The algorithm, HAC, uses a technique known as hierarchical arc consistency. Its performance is analyzed theoretically and the conditions under which it is an improvement are outlined. The use of HAC in a program for understanding sketch maps, Mapsee3, is briefly discussed and experimental results consistent with the theory are reported.  相似文献   

8.
Constraint propagation is one of the techniques central to the success of constraint programming. To reduce search, fast algorithms associated with each constraint prune the domains of variables. With global (or non-binary) constraints, the cost of such propagation may be much greater than the quadratic cost for binary constraints. We therefore study the computational complexity of reasoning with global constraints. We first characterise a number of important questions related to constraint propagation. We show that such questions are intractable in general, and identify dependencies between the tractability and intractability of the different questions. We then demonstrate how the tools of computational complexity can be used in the design and analysis of specific global constraints. In particular, we illustrate how computational complexity can be used to determine when a lesser level of local consistency should be enforced, when constraints can be safely generalized, when decomposing constraints will reduce the amount of pruning, and when combining constraints is tractable.  相似文献   

9.
There have been many proposals for adding sound implementations of numeric processing to Prolog. This paper describes an approach to numeric constraint processing which has been implemented in Echidna, a new constraint logic programming (CLP) language. Echidna uses consistency algorithms which can actively process a wider variety of numeric constraints than most other CLP systems, including constraints containing some common nonlinear functions. A unique feature of Echidna is that it implements domains for real-valued variables with hierarchical data structures and exploits this structure using a hierarchical arc consistency algorithm specialized for numeric constraints. This gives Echidna two advantages over other systems. First, the union of disjoint intervals can be represented directly. Other approaches require trying each disjoint interval in turn during backtrack search. Second, the hierarchical structure facilitates varying the precision of constraint processing. Consequently, it is possible to implement more effective constraint processing control algorithms which avoid unnecessary detailed domain analysis. These advantages distinguish Echidna from other CLP systems for numeric constraint processing.  相似文献   

10.
There are two main solving schemas for constraint satisfaction and optimization problems: i) search, whose basic step is branching over the values of a variables, and ii) dynamic programming, whose basic step is variable elimination. Variable elimination is time and space exponential in a graph parameter called induced width, which renders the approach infeasible for many problem classes. However, by restricting variable elimination so that only low arity constraints are processed and recorded, it can be effectively combined with search, because the elimination of variables may reduce drastically the search tree size.In this paper we introduce BE-BB(k), a hybrid general algorithm that combines search and variable elimination. The parameter k controls the tradeoff between the two strategies. The algorithm is space exponential in k. Regarding time, we show that its complexity is bounded by k and a structural parameter from the constraint graph. We provide experimental evidence that the hybrid algorithm can outperform state-of-the-art algorithms in constraint satisfaction, Max-CSP and Weighted CSP. Especially in optimization tasks, the advantage of our approach over plain search can be overwhelming.  相似文献   

11.
Mackworth and Freuder have analyzed the time complexity of several constraint satisfaction algorithms.(1) Mohr and Henderson have given new algorithms, AC-4 and PC-3, for arc and path consistency, respectively, and have shown that the arc consistency algorithm is optimal in time complexity and of the same order space complexity as the earlier algorithms.(2) In this paper, we give parallel algorithms for solving node and arc consistency. We show that any parallel algorithm for enforcing are consistency in the worst case must have O(na) sequential steps, wheren is number of nodes, anda is the number of labels per node. We give several parallel algorithms to do arc consistency. It is also shown that they all have optimal time complexity. The results of running the parallel algorithms on a BBN Butterfly multiprocessor are also presented.This work was partially supported by NSF Grants MCS-8221750, DCR-8506393, and DMC-8502115.  相似文献   

12.
We propose a natural generalization of arc-consistency, which we call multiconsistency: a value v in the domain of a variable x is k-multiconsistent with respect to a constraint C if there are at least k solutions to C in which x is assigned the value v. We present algorithms that determine which variable-value pairs are k-multiconsistent with respect to several well known global constraints. In addition, we show that finding super solutions is sometimes strictly harder than finding arbitrary solutions for these constraints and suggest multiconsistency as an alternative way to search for robust solutions.Supported by the Danish Research Agency (grant # 272-05-0081).Basic Research in Computer Science, funded by the Danish National Research Foundation.  相似文献   

13.
A global cardinality constraint (gcc) is specified in terms of a set of variables X={x 1,...,x p} which take their values in a subset of V={v 1,...,v d}. It constrains the number of times each value v iV is assigned to a variable in X to be in an interval [l i,u i]. A gcc with costs (costgcc) is a generalization of a gcc in which a cost is associated with each value of each variable. Then, each solution of the underlying gcc is associated with a global cost equal to the sum of the costs associated with the assigned values of the solution. A costgcc constrains the global cost to be less than a given value. Cardinality constraints with costs have proved very useful in many real-life problems, such as traveling salesman problems, scheduling, rostering, or resource allocation. For instance, they are useful for expressing preferences or for defining constraints such as a constraint on the sum of all different variables. In this paper, we present an efficient way of implementing arc consistency for a costgcc. We also study the incremental behavior of the proposed algorithm.  相似文献   

14.
Carmen Gervet 《Constraints》1997,1(3):191-244
Local consistency techniques have been introduced in logic programming in order to extend the application domain of logic programming languages. The existing languages based on these techniques consider arithmetic constraints applied to variables ranging over finite integer domains. This makes difficult a natural and concise modelling as well as an efficient solving of a class of NP-complete combinatorial search problems dealing with sets. To overcome these problems, we propose a solution which consists in extending the notion of integer domains to that of set domains (sets of sets). We specify a set domain by an interval whose lower and upper bounds are known sets, ordered by set inclusion. We define the formal and practical framework of a new constraint logic programming language over set domains, called Conjunto. Conjunto comprises the usual set operation symbols (, , \), and the set inclusion relation (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!37EA!\[ \subseteq \]). Set expressions built using the operation symbols are interpreted as relations (s s 1 = s 2, ...). In addition, Conjunto provides us with a set of constraints called graduated constraints (e.g. the set cardinality) which map sets onto arithmetic terms. This allows us to handle optimization problems by applying a cost function to the quantifiable, i.e., arithmetic, terms which are associated to set terms. The constraint solving in Conjunto is based on local consistency techniques using interval reasoning which are extended to handle set constraints. The main contribution of this paper concerns the formal definition of the language and its design and implementation as a practical language.  相似文献   

15.
16.
李宏博  梁艳春  李占山 《软件学报》2016,27(11):2701-2711
广泛弧相容算法(generalized arc consistency,简称GAC),是求解约束满足问题的核心方法.表约束理论上可以表示所有约束关系,在过去10年中,有很多应用于表约束的广泛弧相容算法被提出来.在这些算法中,表缩减算法的效率非常高.但是目前的表缩减算法只能应用于正表约束,无法直接应用于负表约束.首先,提出一种表缩减算法STR-N,可以直接应用于负表约束;然后,给出了STR-N的两个改进版本STR-N2和STR-NIC.实验结果显示,STR-N算法在负表约束上的求解效率具有明显的优势.  相似文献   

17.
约束网络为计算机科学中的许多问题提供了一种有效的表示方法.一般而言,约束满足问题是NP完全的.然而,许多实际问题通常对约束的结构或形式施加了特殊的限制,从而能够高效地加以解决.迄今,为了识别易处理约束类,人们对特殊的约束或约束网络方面进行了许多研究.相接行凸(connected row-convex,简称CRC)约束网络是Deville等人提出的一类易处理问题.为了给该类问题寻求有效的快速识别算法,在CRC约束网络相关工作基础上,提出了CRC约束矩阵的标准型.在分析CRC约束矩阵的标准型性质的基础上,利用行凸(row-convex,简称RC)约束网络的判定,结合PQ树(由P节点和Q节点构成的树)的性质和矩阵的索引表示法,给出了CRC约束网络的快速识别算法.该算法的时间复杂度为O(n3d2),其中,n为约束网络涉及的变量数,d为各变量的定义域中最大定义域的大小.该时间复杂度达到该类问题的最佳时间复杂度,从而为实际的CRC约束满足问题的求解提供了可行的方法.  相似文献   

18.
Previous studies have demonstrated that designing special purpose constraint propagators can significantly improve the efficiency of a constraint programming approach. In this paper we present an efficient algorithm for bounds consistency propagation of the generalized cardinality constraint (gcc). Using a variety of benchmark and random problems, we show that on some problems our bounds consistency algorithm can dramatically outperform existing state-of-the-art commercial implementations of constraint propagators for the gcc. We also present a new algorithm for domain consistency propagation of the gcc which improves on the worst-case performance of the best previous algorithm for problems that occur often in applications.  相似文献   

19.
We show an algorithm for bound consistency of global cardinality constraints, which runs in time O(n + n′) plus the time required to sort the assignment variables by range endpoints, where n is the number of assignment variables and n′ is the number of values in the union of their domains. It is the first efficient algorithm that achieves bound consistency for all variables, and not only the assignment variables.Partially supported by DFG grant SA 933/1-1.Partially supported by the EU IST Programme, IST-1999-14186 (ALCOM-FT).  相似文献   

20.
Ultraviolet: A Constraint Satisfaction Algorithm for Interactive Graphics   总被引:1,自引:3,他引:1  
Ultraviolet is a constraint satisfaction algorithm intended for use in interactive graphical applications. It is capable of solving constraints over arbitrary domains using local propagation, and inequality constraints and simultaneous linear equations over the reals. To support this, Ultraviolet is a hybrid algorithm that allows different subsolvers to be used for different parts of the constraint graph, depending on graph topology and kind of constraints. In addition, Ultraviolet and its subsolvers support plan compilation, producing efficient compiled code that can be evaluated repeatedly to resatisfy a given collection of constraints for different input values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号