首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Chemical denitrification of water by zero-valent magnesium powder   总被引:1,自引:0,他引:1  
A laboratory-scale study was conducted in batch mode to investigate the feasibility of using zero-valent magnesium (Mg(0)), for removal of nitrate from aqueous solution. Reaction pH, dose of Mg(0), initial nitrate concentration and temperature were considered variable parameters during the study. Strong acidic condition enhanced nitrate reduction and in absence of external proton addition, reaction pH increased rapidly above ten and insignificant nitrate removal (7-16%) was achieved. At Mg(0):NO(3)(-)-N molar ratio of 5.8 and controlled reaction pH of 2, 84% denitrification efficiency was achieved (initial NO(3)(-)-N 50 mg/L) under ambient temperature and pressure and total nitrogen removal was 70% with 3.2% and 10% conversion of initial NO(3)(-)-N to NO(2)(-)-N and NH(4)(+)-N, respectively. The reaction was first order with respect to nitrate concentration. Nitrate removal rate decreased with solution pH and increased linearly with Mg(0) dose. Nitrate removal was coupled with 96-100% removal of dissolved oxygen and 85-90% generation of soluble Mg(2+) ion. An activation energy (E(a)) of nitrate reduction over the temperature range of 10-50 degrees C was observed as 17.7 kJ mol(-1).  相似文献   

2.
The kinetic behavior of a nitrifying sludge exposed to 2-chlorophenol (2-CP) was evaluated in batch culture. The assays were performed using a stabilized nitrifying sludge. In control assays with (mg L(-1)): NH(4)(+)-N (100) and NaHCO(3)(-)-C (250), the substrates were consumed in 8h, the ammonium consumption efficiency was 99% and the NO(3)(-) yield higher than 0.9. When 5mg 2-CP-C L(-1) was added, it was transformed into an unidentified intermediate and the nitrifying efficiency decreased to 10%. Ammonium specific consumption rate diminished 95%, but the NO(3)(-) yield remained higher than 0.9. The biomass previously exposed to 2-CP was newly suspended with NH(4)(+)-N or NO(2)(-)-N in order to evaluate the ammonium and nitrite oxidizing processes. The consumption efficiencies and NO(3)(-) yields were similar to those obtained in control assays. However, the total time required for ammonium and nitrite consumption increased to 120 and 42 h, respectively. Specific consumption rates for NH(4)(+)-N and NO(2)(-)-N decreased by 95% and 83% respectively, compared to control assays. Thus, the previous contact to 2-CP had more influence on ammonium oxidizing process than the nitrite oxidizing process. These are the first evidences where a nitrifying sludge exposed to 2-CP are reported.  相似文献   

3.
Cadmium contamination in soil has become a serious issue in sustainable agriculture production and food safety. A pot experiment was conducted to study the influence of four N fertilizer forms on grain yield, Cd concentration in plant tissues and oxidative stress under two Cd levels (0 and 100 mg Cd kg(-1)soil). The results showed that both N form and Cd stress affected grain yield, with urea-N and NH(4)(+)-N treatments having significantly higher grain yields, and Cd addition reducing yield. NO(3)(-)-N and NH(4)(+)-N treated plants had the highest and lowest Cd concentration in plant tissues, respectively. Urea-N and NH(4)(+)-N treatments had significantly higher N accumulation in plant tissues than other two N treatments. Cd addition caused a significant increase in leaf superoxide dismutase (SOD) and peroxidase (POD) activities for all N treatments, except for NO(3)(-)-N treatment, with urea-N and NH(4)(+)-N treated plants having more increase than organic-N treated ones. The results indicated that growth inhibition, yield reduction and Cd uptake of rice plants in response to Cd addition varied with the N fertilizer form.  相似文献   

4.
Four simulated landfill anaerobic bioreactors were performed to investigate the influence of alkalinity on the anaerobic treatment of municipal solid waste (MSW). Leachate was recirculated in all the four reactors. One reactor was operated without alkalinization. The other three were operated under alkaline conditions. Na(2)CO(3), NaHCO(3) and NaOH were added to leachate in the second, third and fourth reactor, respectively. Experimental results showed that CO(3)(2-) and HCO(3)(-) addition had a more pronounced effect on MSW stabilization while the effect of addition of OH(-) was weak. The concentration of COD, BOD(5), total nitrogen (TN), ammonium nitrogen (NH(4)(+)-N) and nitrate nitrogen (NO(3)(-)-N), etc. in leachate significantly reduced in four reactors. The removal efficiencies were 90.56%, 92.21%, 92.74% and 90.29% for COD, 66.45%, 72.38%, 68.62% and 68.44% for NO(3)(-)-N, and 96.5%, 98.75%, 97.75% and 98% for NO(2)(-)-N in the control, Na(2)CO(3), NaHCO(3) and OH(-) added reactors, respectively. The final BOD(5)/COD was 0.262, 0.104, 0.124, and 0.143, and pH was 7.13, 7.28, 7.42, and 7.24 for control, Na(2)CO(3) added, NaHCO(3) added, and OH(-) added reactor, respectively. Therefore, alkalinity addition had positive effect on the stabilization of MSW.  相似文献   

5.
To characterize the effect of amended soil on nitrogen removal in subsurface wastewater infiltration system (SWIS), culture, grass carbon, and zeolite were mixed to produce microbial inoculums, and then the optimal microbial inoculums, nutrient substance, cinder, and original soil were mixed to produce the soils through bioaugmentation. Results indicate that the microbial inoculums (culture+50% grass carbon+50% zeolite) and the amended soil (12.5% microbial inoculums+25% nutrient substrate+12.5% cinder+50% original soil) have the optimal biogenic stimulating properties, and the adsorption capacity of the amended soil are 1.216 mg-Pg(-1) and 0.495 mg-Ng(-1). The laboratory soil column experiment indicates that the efficient mode of nitrogen removal in lab-scale SWIS is adsorption-nitrification-denitrification and the nitrification/denitrification can be enhanced by the application of the amended soil. On average, the SWIS filled with amended soil converts 85% of ammonia nitrogen (NH(4)(+)-N) to NO(x)(-)-N and removes 49.8-60.6% of total nitrogen (TN), while the system filled with original soil removes 80% of NH(4)(+)-N and 31.3-43.2% of TN at 4-8 cm day(-1). Two systems are overloads at 10 cm day(-1). It is concluded that the microbial activities and nitrogen removal efficiencies are improved in SWIS after bioaugmentation.  相似文献   

6.
An up-flow biological aerated filter packed with two layers media was employed for tertiary treatment of textile wastewater secondary effluent. Under steady state conditions, good performance of the reactor was achieved and the average COD, NH(4)(+)-N and total nitrogen (TN) in the effluent were 31, 2 and 8mg/L, respectively. For a fixed dissolved oxygen (DO) concentration, an increase of hydraulic loading resulted in a decrease in substrate removal. With the increase of hydraulic loadings from 0.13 to 0.78m(3)/(m(2)h), the removal efficiencies of COD, NH(4)(+)-N and TN all decreased, which dropped from 52 to 38%, from 90 to 68% and from 45 to 33%, respectively. In addition, the results also confirmed that the increase of COD and NH(4)(+)-N removal efficiencies resulted from the increase of DO concentrations, but this variation trend was not observed for TN removal. With the increase of DO concentrations from 2.4 to 6.1mg/L, the removal efficiencies of COD and NH(4)(+)-N were 39-53% and 64-88%, whenas TN removal efficiencies increased from 39 to 42% and then dropped to 35%.  相似文献   

7.
In this paper, we found that the acidic and basic dyes were easily decolorized by a bis-ions coexistence system of NH(4)(+) and NO(3)(-) under UV light irradiation. The coexistence of NH(4)(+) and NO(3)(-) is a necessary condition for the photocatalytic decolorization of soluble dyes. The photocatalytic decolorization of methyl orange (MO) and methylene blue (MB) follows the first order rate kinetics. The location of an absorption peak in the visible region is blue-shifted with the increase in the illumination time. It is proposed that the photocatalytic decolorization of soluble dyes in the bis-ions coexistence system of NH(4)(+) and NO(3)(-) is a photoreduction reaction, in which the ammonium nitrate acts as a photocatalyst. The chromophore of acidic and basic dyes reacts with hydrogen and then results in their rapid decolorization.  相似文献   

8.
Fluidized-bed biofilm nitritation and denitritation reactors (FBBNR and FBBDR) were operated to eliminate the high concentrations of nitrogen by nitritation and denitritation process. The dissolved oxygen (DO) concentration was varied from 1.5 to 2.5 g/m(3) at the top of the reactor throughout the experiment. NH(4)-N conversion and NO(2)-N accumulation in the nitritation reactor effluent was over 90 and 65%, respectively. The average NH(4)-N removal efficiency was 99.2 and 90.1% at the NLR of 0.9 and 1.2 kg NH(4)-N/m(3)day, respectively. Increasing the NLR from 1.1 to 1.2 kg NH(4)-N/m(3)day decreased the NH(4)-N elimination approximately two-fold while NH(4)-N conversion to NO(2)-N differences were negligible. The NO(2)-N/NO(x)-N ratios corresponded to 0.74, 0.73, 0.72, and 0.69, respectively, indicating the occurrence of partial nitrification. An average free ammonia concentration in the FBBNR was high enough to inhibit nitrite oxidizers selectively, and it seems to be a determining factor for NO(2)-N accumulation in the process. In the FBBDR, the NO(x)-N (NO(2)-N+NO(3)-N) concentrations supplied were between 227 and 330 mg N/l (NLR was between 0.08 and 0.4 kg/m(3)day) and the influent flow was increased as long as the total nitrogen removal was close to 90%. The NO(2)-N and NO(3)-N concentrations in the effluent were 3.0 and 0.9 mg/l at 0.08 kg/m(3)day loading rate. About 98% removal of NO(x)-N was achieved at the lowest NLR in the FBBDR. The FBBDR exhibited high nitrogen removal up to the NLR of 0.25 kg/m(3)day. The NO(x)-N effluent concentration never exceeded 15 mg/l. The total nitrogen removal efficiency in the FBBRs was higher than 93% at 21+/-1 degrees C.  相似文献   

9.
A feasible method for treatment of the wastewater from the two-staged neutralization in 2,2',5,5'-tetrachlorobenzidine (TCB) manufacturing processes, a refractory dye intermediate effluents, based on combined micro-electrochemical oxidation or iron-chipping filtration (ICF) and air-stripping reactor (ASR), was developed. On conditions of HRT 1h, pH 3.0 in ICF and HRT 38 h, gas-liquid ratio 15, pH 6.0-8.65, temperature 26 degrees C in ASR, the overall COD, color, TCB and NH(4)(+)-N removal were 96.8%, 91%, 87.61% and 62%, respectively, during the treatment of TCB wastewater from the two-staged neutralization dissolved by methanol. The averaged 18.3%, 81.7% of the total degraded COD, 35.2%, 64.8% of TCB were carried out in ICF and ASR, respectively. NH(4)(+)-N removal was finished mainly in ASR. The experimental results indicated that the combined micro-electrochemical oxidation and air-stripping process performed good treatment of COD, color, TCB and NH(4)(+)-N removal in TCB wastewater from the two-staged neutralization dissolved by ethanol or acetone, came up the discharge standard in China. But the TCB wastewater from the two-staged neutralization dissolved by methanol should be deeply treated before discharged.  相似文献   

10.
Anaerobic ammonia removal in presence of organic matter: a novel route   总被引:5,自引:0,他引:5  
This study describes the feasibility of anaerobic ammonia removal process in presence of organic matter. Different sources of biomass collected from diverse eco-systems containing ammonia and organic matter (OM) were screened for potential anaerobic ammonia removal. Sequential batch studies confirmed the possibility of anaerobic ammonia removal in presence of OM, but ammonia was oxidized anoxically to nitrate (at oxidation reduction potential; ORP=-248+/-25 mV) by an unknown mechanism unlike in the reported anammox process. The oxygen required for oxidation of ammonia might have been generated through catalase enzymatic activity of facultative anaerobes in mixed culture. The oxygen generation possibility by catalase enzyme route was demonstrated. Among the inorganic electron acceptors (NO(2)(-), NO(3)(-) and SO(4)(2-)) studied, NO(2)(-) was found to be most effective in total nitrogen removal. Denitrification by the developed culture was much effective and faster compared to ammonia oxidation. The results of this study show that anaerobic ammonia removal is feasible in presence of OM. The novel nitrogen removal route is hypothesized as enzymatic anoxic oxidation of NH(4)(+) to NO(3)(-), followed by denitrification via autotrophic and/or heterotrophic routes. The results of batch study were confirmed in continuous reactor operation.  相似文献   

11.
Steel-making slag, a waste by-product of the Steel Industry, constitutes a major disposal problem. In the present study, excellent adsorbent materials for reducing eutrophication in wastewaters have been prepared from this slag. Heated samples of acid-treated slag and mixtures of slag with kaolinite and Al(OH)(3) were examined to determine their uptake capacities for NH(4)(+) and PO(4)(3-) from aqueous solutions. In general, the equilibrium pH of the solution increased in comparison to initial pH with the uptake of target ions, the sample activated slag-Al(OH)(3) showing the smallest change. The highest PO(4)(3-) uptake capacity was obtained with the slag-Al(OH)(3) mixture heated at 900 degrees C whereas the highest uptake of NH(4)(+) was found in the slag-Al(OH)(3) mixture heated at 800 degrees C. The uptake rates for PO(4)(3-) and NH(4)(+) by the slag-Al(OH)(3) mixture heated at 900 degrees C were 2.91 and 0.65 micro mol/(g min), respectively. It was shown that heating slag composites prior to incorporation into wastewater treatment filters resulted in an increased degree of NH(4)(+) and PO(4)(3-) uptake.  相似文献   

12.
Bioremoval of trimethylamine (TMA) in two three-stage biofilters packed with compost (A) and sludge (B), respectively, was investigated. Both biofilters were operated with an influent TMA concentration of 19.2-57.2mgm(-3) for 67 days. Results showed that all of the inlet TMA could be removed by both biofilters. However, removal efficiency and transformation of TMA in each section of both biofilters was different. In the Introduction section, TMA removal efficiency and maximum elimination capacity of the compost medium were greater than those of sludge medium under higher inlet TMA concentration. In comparison with biofilter A, considerably higher NH(3) concentrations in effluent of all three sections in biofilter B were observed after day 19. Although, NO(2)(-)-N concentration in each section of biofilter A was relatively lower, NO(3)(-)-N content in each section of biofilter A increased after day 26, especially in the Materials and method section which increased remarkably due to a lesser amount of TMA and higher ammonia oxidation and nitrification in compost medium. In contrast, neither NO(2)(-)-N nor NO(3)(-)-N were detected in either section of biofilter B at any time throughout the course of the experiment. The cumulative results indicated that compost is more favorable for the growth of TMA-degrading and nitrifying bacteria as compared to the sludge and could be a highly suitable packing material for biodegradation and transformation of TMA.  相似文献   

13.
A novel combined process was proposed to treat municipal landfill leachate with high concentrations of ammonium and organics. This process consisted of a partial nitritation reactor (PNR), an anaerobic ammonium oxidation (Anammox) reactor (AR) and two underground soil infiltration systems (USIS-1 and USIS-2). Based on the optimum operating conditions obtained from batch tests of individual unit, the combined process was continuously operated on a bench scale for 166 days. Partial nitritation was performed in a fixed bio-film reactor (PNR, working volume=12 L). Ammonium nitrogen-loading rate (Nv) and DO were combined to monitor partial nitritation, and at T=30+/-1 degrees C, Nv=0.27-1.2 kg/(m3.d), DO=0.8-2.3 mg/L, the ratios of nitrite nitrogen (NO2--N) to ammonium nitrogen (NH4+-N) were successfully kept close to 1.0-1.3 in the effluent. Nitrate nitrogen (NO3--N) less than 43 mg/L was observed. The effluent of PNR was ideally suited as influent of AR. Sixty-nine percent CODcr from the raw leachate was degraded in the PNR. Anammox was carried out in a fixed bio-film reactor (AR, working volume=36 L). At T=30+/-1 degrees C, Nv=0.06-0.11 kg/(m3.d), about 60% NH4+-N and 64% NO2--N in the influent of AR were simultaneously removed. Inhibition of high-strength NO2--N (up to 1011 mg/L) should be responsible for the low removal rate of nitrogen. About 35% aquatic humic substance (AHS) was degraded in the AR. With the same working volume (200 L), USIS-1 and USIS-2 were alternately performed to treat the effluent from AR at one cycle of about 30 days. At hydraulic loading rate (HLR)=0.02-0.04 m3/m3.d, pollutant loading rates (PLR)=NH4+-N相似文献   

14.
Groundwater and river water samples were collected from the study area to investigate the spatial distribution of nitrate (NO(3)(-)) in the central-west region of Bangladesh. The shallow and deep groundwater nitrate concentrations ranged from <0.10 to 75.12 and <0.10 to 40.78 mg/L, respectively. Major river water NO(3)(-) concentrations were ranged from 0.98 to 2.32 mg/L with an average of 1.8 mg/L. The average Cl(-)/NO(3)(-) ratio (4.9) of major river water has been considered as reference point to delineate denitrification processes. The alluvial fan, alluvial, deltaic and coastal deposits shallow groundwater having C1(-)/NO(3)(-) values less than that of the average river water value (4.9), suggested denitrification processes within the aquifers. On the other hand, denitrification processes are insignificant in the Pleistocene terraces area aquifers related to relatively higher concentrations of nitrate. Iron pyrite has been found as insignificant effect on denitrification.  相似文献   

15.
A simulated wastewater containing phenol (2500 mg/L), thiocyanate and ammonia-nitrogen (500 mg/L) was treated in an anaerobic (R1)-anoxic (R2)-aerobic (R3) moving bed biofilm reactor system at different hydraulic retention time (HRT) intervals (total HRT 3-8 days, R1: 1.5-4 days; R2: 0.75-2 days and R3: 0.75-2 days) and feed thiocyanate (SCN(-)) concentrations (110-600 mg/L) to determine substrate removal kinetics. In R1, phenol and COD reduction and specific methanogenic activity were inhibited due to the increase of SCN(-) in feed. Bhatia et al. model having inbuilt provision of process inhibition described the kinetics of COD and phenol utilization with maximum utilization rates of 0.398 day(-1) and 0.486 day(-1), respectively. In R2 and R3 modified Stover-Kincannon model was suitable to describe substrate utilization. In R2 respective maximum SCN(-), phenol, COD and NO(3)(-)-N utilization rates were 0.23, 5.28, 37.7 and 11.82 g/L day, respectively. In aerobic reactor R3, COD, SCN(-) and NH(4)(+)-N removal rates were, respectively, 10.53, 1.89, and 2.17 g/L day. The minimum total HRT of three-stage system was recommended as 4 days.  相似文献   

16.
The concentrations of total suspended particulate (TSP), fine particles PM(2.5) (with aerodynamic diameter <2.5 microm), coarse particles PM(2.5-10) (with aerodynamic diameter 2.5-10 microm,), and water-soluble inorganic ions were studied at two offshore sampling sites, Taichung Harbor (TH) and Wuci Traffic (WT), near Taiwan Strait in central Taiwan during March 2004 to January 2005. Statistical analyses were also carried out to estimate the possible sources of particulate pollution. Experimental results showed that the average mass concentrations of TSP, PM(2.5) and PM(2.5-10) at TH and WT sampling sites were 154.54 +/- 31.45 and 113.59 +/- 31.94 microg m(-3), 54.03 +/- 16.92 and 42.76 +/- 12.52 microg m(-3), and 30.31+/- 9.79 and 24.16 +/- 7.27 microg m(-3), respectively. The dominant inorganic ions at two sampling sites were SO(4)(2-), NO(3)(-), and NH(4)(+) for TSP and PM(2.5), but that were Ca(2+), Cl(-), and Na(+) for PM(2.5-10). The concentrations of most particulates and inorganic ions were higher in winter at both two sampling sites, and were higher at TH than WT sampling site in each season. From statistical analysis, air-slake of crust surface, sea-salt aerosols, agriculture activities, coal combustion, and mobile vehicles were the possible emission sources of particulate pollution at TH and WT sampling sites.  相似文献   

17.
High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between 10(6) and 10(8) cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO(3)(-)-N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH(4)(+)-N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system.  相似文献   

18.
Huang X  Lv D  Yue H  Attia A  Yang Y 《Nanotechnology》2008,19(22):225606
α-?and β-MnO(2) were controllably synthesized by hydrothermally treating amorphous MnO(2) obtained via a reaction between Mn(2+) and MnO(4)(-), and cationic effects on the hydrothermal crystallization of MnO(2) were investigated systematically. The crystallization is believed to proceed by a dissolution-recrystallization mechanism; i.e.?amorphous MnO(2) dissolves first under hydrothermal conditions, then condenses to recrystallize, and the polymorphs formed are significantly affected by added cations such as K(+), NH(4)(+) and H(+) in the hydrothermal systems. The experimental results showed that K(+)/NH(4)(+) were in competition with H(+) to form polymorphs of α-?and β-MnO(2), i.e., higher relative K(+)/NH(4)(+) concentration favoured α-MnO(2), while higher relative H(+) concentration favoured β-MnO(2).  相似文献   

19.
A laboratory-scale activated sludge plant composed of a 20 L volume aerobic reactor followed by a 12 L volume settling tank and operating at 35 degrees C was used to study the biodegradation of coke wastewater. The concentrations of ammonium nitrogen (NH(4)(+) -N), phenols, chemical oxygen demand (COD) and thiocyanate (SCN(-)) in the wastewater ranged between 504 and 2,340, 110 and 350, 807 and 3,275 and 185 and 370 mg/L, respectively. The study was undertaken with and without the addition of bicarbonate. The addition of this inorganic carbon source was necessary to favour nitrification, as the alkalinity of the wastewater was very low. Maximum removal efficiencies of 75%, 98% and 90% were obtained for COD, phenols and thyocianates, respectively, without the addition of bicarbonate. The concentration of ammonia increased in the effluent due to both the formation of NH(4)(+) as a result of SCN(-) biodegradation and to organic nitrogen oxidation. A maximum nitrification efficiency of 71% was achieved when bicarbonate was added, the removals of COD and phenols being almost similar to those obtained in the absence of nitrification. Batch experiments were performed to study the influence of pH and alkalinity on the biodegradation of phenols and thiocyanate.  相似文献   

20.
The photocatalytic degradation of C.I. Acid Red 27 (AR27), an anionic monoazo dye of acid class, in aqueous solutions was investigated with immobilized ZnO catalyst on glass plates in a continuous-mode. In the slurry ZnO system the separation and recycling of the photocatalyst is practically difficult. Thus, ZnO was immobilized on solid supports to solve this problem. The removal percent increases with increasing the photoreactor volume and light intensity but it decreases when the flow rate is increased. With decreasing flow rate from 43 to 15mlmin(-1), the complete decolorization and degradation was obtained at around 748 and 1080cm(3) from photoreactor volume. The increase in the light intensity from 21.4 to 58.5Wm(-2) increases the decolorization from 23 to 57.6% and degradation from 17.5 to 37.8% for 374cm(3) of photoreactor volume. NH(4)(+), NO(3)(-), NO(2)(-) and SO(4)(2-) ions were analyzed as mineralization products of nitrogen and sulfur heteroatoms. Results showed that final concentration of SO(4)(2-) ions and N-containing mineralization products were less than the finally expected stoichiometric values. The positive slope of production of NH(4)(+), NO(3)(-) and NO(2)(-) shows that these compounds are initial products resulting directly from the initial attack on the nitrogen-to-nitrogen double bond (-NN-) of the azo dye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号