首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine deaminase (ADA) deficiency causes lymphopenia and immunodeficiency due to toxic effects of its substrates. Most patients are infants with severe combined immunodeficiency disease (SCID), but others are diagnosed later in childhood (delayed onset) or as adults (late onset); healthy individuals with "partial" ADA deficiency have been identified. More than 50 ADA mutations are known; most patients are heteroallelic, and most alleles are rare. To analyze the relationship of genotype to phenotype, we quantitated the expression of 29 amino acid sequence-altering alleles in the ADA-deleted Escherichia coli strain SO3834. Expressed ADA activity of wild-type and mutant alleles ranged over five orders of magnitude. The 26 disease-associated alleles expressed 0.001%-0.6% of wild-type activity, versus 5%-28% for 3 alleles from "partials." We related these data to the clinical phenotypes and erythrocyte deoxyadenosine nucleotide (dAXP) levels of 52 patients (49 immunodeficient and 3 with partial deficiency) who had 43 genotypes derived from 42 different mutations, including 28 of the expressed alleles. We reduced this complexity to 13 "genotype categories," ranked according to the potential of their constituent alleles to provide ADA activity. Of 31 SCID patients, 28 fell into 3 genotype categories that could express <=0.05% of wild-type ADA activity. Only 2 of 21 patients with delayed, late-onset, or partial phenotypes had one of these "severe" genotypes. Among 37 patients for whom pretreatment metabolic data were available, we found a strong inverse correlation between red-cell dAXP level and total ADA activity expressed by each patient's alleles in SO3834. Our system provides a quantitative framework and ranking system for relating genotype to phenotype.  相似文献   

2.
The Wiskott-Aldrich syndrome (WAS), an X-linked immunodeficiency disease caused by mutation in the recently isolated gene encoding WAS protein (WASP), is known to be associated with extensive clinical heterogeneity. Cumulative mutation data have revealed that WASP genotypes are also highly variable among WAS patients, but the relationship of phenotype with genotype in this disease remains unclear. To address this issue we characterized WASP mutations in 24 unrelated WAS patients, including 18 boys with severe classical WAS and 6 boys expressing mild forms of the disease, and then examined the degree of correlation of these as well as all previously published WASP mutations with disease severity. By analysis of these compiled mutation data, we demonstrated clustering of WASP mutations within the four most N-terminal exons of the gene and also identified several sites within this region as hotspots for WASP mutation. These characteristics were observed, however, in both severe and mild cases of the disease. Similarly, while the cumulative data revealed a predominance of missense mutations among the WASP gene lesions observed in boys with isolated thrombocytopenia, missense mutations were not exclusively associated with milder WAS phenotypes, but also comprised a substantial portion (38%) of the WASP gene defects found in patients with severe disease. These findings, as well as the detection of identical WASP mutations in patients with disparate phenotypes, reveal a lack of phenotype concordance with genotype in WAS and thus imply that phenotypic outcome in this disease cannot be reliably predicted solely on the basis of WASP genotypes.  相似文献   

3.
Adult polyglucosan body disease (APBD) is a late-onset, slowly progressive disorder of the nervous system caused by glycogen branching enzyme (GBE) deficiency in a subgroup of patients of Ashkenazi Jewish origin. Similar biochemical finding is shared by glycogen storage disease type IV (GSD IV) that, in contrast to APBD, is an early childhood disorder with primarily systemic manifestations. Recently, the GBE cDNA was cloned and several mutations were characterized in different clinical forms of GSD IV. To examine whether mutations in the GBE gene account for APBD, we studied 7 patients from five Jewish families of Ashkenazi ancestry. The diagnosis was based on the typical clinical and pathological findings, and supported by reduced GBE activity. We found that the clinical and biochemical APBD phenotype in all five families cosegregated with the Tyr329Ser mutation, not detected in 140 controls. As this mutation was previously identified in a nonprogressive form of GSD IV and was shown in expression studies to result in a significant residual GBE activity, present findings explain the late onset and slowly progressive course of APBD in our patients. We conclude that APBD represents an allelic variant of GSD IV, but the reason for the difference in primary tissue involvement must be established.  相似文献   

4.
Dihydropyrimidinase (DHP) deficiency (MIM 222748) is characterized by dihydropyrimidinuria and is associated with a variable clinical phenotype. This disease might be associated with a risk of 5-fluorouracil toxicity, although no cases have been reported. We present here both the molecular characterization of the human DHP gene and, for the first time, the mutations causing DHP deficiency. The human DHP gene spans >80 kb and consists of 10 exons. It has been assigned to 8q22, by FISH. We performed mutation analysis of genomic DNA in one symptomatic and five asymptomatic individuals presenting with dihydropyrimidinuria. We identified one frameshift mutation and five missense mutations. Two related Japanese adult subjects were homozygous for the Q334R substitution, whereas two other, unrelated Japanese infant subjects were heterozygous for the same mutation, but this mutation is not common in the Japanese population. A Caucasian pediatric patient exhibiting epileptic attacks, dysmorphic features, and severe developmental delay was homozygous for W360R. Using a eukaryotic expression system, we showed that all mutations reduced enzyme activity significantly, indicating that these are crucial DHP deficiency-causing mutations. There was no significant difference, in residual activity, between mutations observed in the symptomatic and those observed in the asymptomatic individuals.  相似文献   

5.
Carbohydrate-deficient-glycoprotein syndrome type 1 (CDG1; also known as "Jaeken syndrome") is an autosomal recessive disorder characterized by defective glycosylation. Most patients show a deficiency of phosphomannomutase (PMM), the enzyme that converts mannose 6-phosphate to mannose 1-phosphate in the synthesis of GDP-mannose. The disease is linked to chromosome 16p13, and mutations have recently been identified in the PMM2 gene in CDG1 patients with a PMM deficiency (CDG1A). The availability of the genomic sequences of PMM2 allowed us to screen for mutations in 56 CDG1 patients from different geographic origins. By SSCP analysis and by sequencing, we identified 23 different missense mutations and 1 single-base-pair deletion. In total, mutations were found on 99% of the disease chromosomes in CDG1A patients. The R141H substitution is present on 43 of the 112 disease alleles. However, this mutation was never observed in the homozygous state, suggesting that homozygosity for these alterations is incompatible with life. On the other hand, patients were found homozygous for the D65Y and F119L mutations, which must therefore be mild mutations. One particular genotype, R141H/D188G, which is prevalent in Belgium and the Netherlands, is associated with a severe phenotype and a high mortality. Apart from this, there is only a limited relation between the genotype and the clinical phenotype.  相似文献   

6.
A novel hexyl-substituted methylenecyclopropyl acetyl-CoA was tested as an enzyme-specific acyl-CoA dehydrogenase inhibitor. Its CoA ester generated in situ from the carboxylic acid and CoASH, displayed marked differences in inhibition specificity as compared to methylenecyclopropyl acetyl-CoA, consistent with the substrate specificities of the target enzymes. Thus methylenecyclopropyl acetyl-CoA inactivated short-chain-specific acyl-CoA dehydrogenase rapidly, medium-chain-specific acyl-CoA dehydrogenase much more slowly and had no effect on long-chain- or very long-chain-specific acyl-CoA dehydrogenases. The hexyl-substituent on the methylenecyclopropyl ring gave an inhibitor which rapidly inactivated MCAD and LCAD whilst VLCAD was inhibited more slowly and SCAD was essentially unaffected. In some cases (e.g. SCAD and MCPA-CoA) inhibition was accompanied by flavin bleaching. In other cases (e.g. LCAD and C6MCPA) less pronounced bleaching suggests a different chemistry of inhibition.  相似文献   

7.
The aim of our study was to determine, by allele-specific PCR, the frequency of point mutations in 130 Brazilian patients with the classical and nonclassical forms of 21-hydroxylase deficiency and to correlate genotype with phenotype. The most frequent mutations were 12 splice (41.8% in salt wasting), I172N (32.6% in simple virilizing), and V281L (40.2% in late onset form). The frequency of the 9 most common point mutations was similar to that reported for other countries, except for Del 8 nt and Cluster, which were less frequent in the classical form. Rarer mutations such as P453S, G291S, I7 splice, W405X, R483P, and R483-->frameshift were rarely found or were absent. The 93 fully genotyped patients were classified into 3 mutation groups, based on the degree of enzymatic activity (group A, <2%; group B, approximately 2%, and group C, >18%). In group A, 62% of the cases presented the salt wasting form; in group B, 96% the simple virilizing form; and in group C, 88% the late onset form. We diagnosed 80% of the affected alleles after screening for large rearrangements and 15 point mutations. The absence of previously described mutations in 20% of the affected alleles suggests the presence of new mutations in our population.  相似文献   

8.
OBJECTIVES: We studied the clinical and genetic features of familial hypertrophic cardiomyopathy (FHC) caused by an Asp175Asn mutation in the alpha-tropomyosin gene in affected subjects from three unrelated families. BACKGROUND: Correlation of genotype and phenotype has provided important information in FHC caused by beta-cardiac myosin and cardiac troponin T mutations. Comparable analyses of hypertrophic cardiomyopathy caused by alpha-tropomyosin mutations have been hampered by the rarity of these genetic defects. METHODS: The haplotypes of three kindreds with FHC due to an alpha-tropomyosin gene mutation, Asp175Asn, were analyzed. The cardiac histopathologic findings of this mutation are reported. Distribution of left ventricular hypertrophy in affected members was assessed by two-dimensional echocardiography, and patient survival rates were compared. RESULTS: Genetic studies defined unique haplotypes in the three families, demonstrating that independent mutations caused the disease in each. The Asp175Asn mutation caused cardiac histopathologic findings of myocyte hypertrophy, disarray and replacement fibrosis. The severity and distribution of left ventricular hypertrophy varied considerably in affected members from the three families (mean maximal wall thickness +/- SD: 24 +/- 4.5 mm in anterior septum of Family DT; 15 +/- 2.7 mm in anterior septum and free wall of Family DB; 18 +/- 2.1 mm in posterior septum of Family MI), but survival was comparable and favorable. CONCLUSIONS: Nucleotide residue 579 in the alpha-tropomyosin gene may have increased susceptibility to mutation. On cardiac histopathologic study, defects in this sarcomere thin filament component are indistinguishable from other genetic etiologies of hypertrophic cardiomyopathy. The Asp175Asn mutation can elicit different morphologic responses, suggesting that the hypertrophic phenotype is modulated not by genetic etiologic factors alone. In contrast, prognosis reflected genotype; near normal life expectancy is found in hypertrophic cardiomyopathy caused by the alpha-tropomyosin mutation Asp175Asn.  相似文献   

9.
A deficiency in uroporphyrinogen decarboxylase (UROD) enzyme activity, the fifth enzyme of the heme biosynthetic pathway, is found in patients with sporadic porphyria cutanea tarda (s-PCT), familial porphyria cutanea tarda (f-PCT), and hepatoerythropoietic porphyria (HEP). Subnormal UROD activity is due to mutations of the UROD gene in both f-PCT and HEP, but no mutations have been found in s-PCT. Genetic analysis has determined that f-PCT is transmitted as an autosomal dominant trait. In contrast, HEP, a severe form of cutaneous porphyria, is transmitted as an autosomal recessive trait. HEP is characterized by a profound deficiency of UROD activity, and the disease is usually manifest in childhood. In this study, a strategy was designed to identify alleles responsible for the HEP phenotype in three unrelated families. Mutations of UROD were identified by direct sequencing of four amplified fragments that contained the entire coding sequence of the UROD gene. Two new missense mutations were observed at the homoallelic state: P62L (proline-to-leucine substitution at codon 62) in a Portuguese family and Y311C (tyrosine-to-cysteine substitution at codon 311) in an Italian family. A third mutation, G281E, was observed in a Spanish family. This mutation has been previously described in three families from Spain and one from Tunisia. In the Spanish family described in this report, a paternal uncle of the proband developed clinically overt PCT as an adult and proved to be heterozygous for the G281E mutation. Mutant cDNAs corresponding to the P62L and Y311C changes detected in these families were created by site-directed mutagenesis. Recombinant proteins proved to have subnormal enzyme activity, and the Y311C mutant was thermolabile.  相似文献   

10.
Mutations in the FBN1 gene, which encodes fibrillin-1, cause Marfan syndrome (MFS) and have been associated with a wide range of milder, overlap phenotypes. The factors that modulate phenotypic severity, both between and within families, remain to be determined. This study examines the relationship between the FBN1 genotype and phenotype in families with extremely mild phenotypes and in those that show striking clinical variation among apparently affected individuals. In one family, clinically similar but etiologically distinct disorders are segregating independently. In another, somatic mosaicism for a mutant FBN1 allele is associated with subdiagnostic manifestations, whereas germ-line transmission of the identical mutation causes severe and rapidly progressive disease. A third family cosegregates mild mitral valve prolapse syndrome with a mutation in FBN1 that can be functionally distinguished from those associated with the classic MFS phenotype. These data have immediate relevance for the diagnostic and prognostic counseling of patients and their family members.  相似文献   

11.
BACKGROUND & AIMS: The phenotype of hereditary nonpolyposis colorectal cancer shows interfamilial and intrafamilial variation even in the presence of identical predisposing mutations, suggesting the existence of additional phenotype determinants. The modifying role of genetic polymorphisms in loci involved in carcinogen metabolism was studied. METHODS: We focused on colon cancers from kindreds sharing one of two predisposing mutations (mutation 1 or 2) in the mismatch repair gene MLH1 (78 and 14 tumors, respectively). Polymorphisms in N-acetyltransferase 1 (NAT1) and glutathione S-transferase (GST) M1 and GSTT1 were investigated. RESULTS: The NAT1 allele 10 was associated with lower median age at diagnosis in both groups. In mutation 1 group, the NAT1 allele 10 was a risk factor for distal tumor location, both alone (P = 0.028) and combined with the GSTT1-positive genotype (P = 0.008). On the other hand, the combined null genotype of GSTM1 and GSTT1 was associated with proximal tumors. Associations with tumor location were not observed in patients with mutation 2, probably reflecting a small sample size. CONCLUSIONS: The results suggest that genetic polymorphisms in carcinogen metabolism modify the age of onset and tumor location in individuals with inherited deficiency of DNA mismatch repair.  相似文献   

12.
This study investigated the relations between nasal transepithelial electric potential difference (PD) and the phenotype and genotype of cystic fibrosis (CF) adult patients. Basal nasal PD was measured in 95 adult CF patients who were classified into three groups of nasal PD (expressed as absolute values) according to the 10th and the 90th percentiles (28.3 and 49.2 mV, respectively), which defined group 1 (nasal PD < or =28.3 mV), group 2 (nasal PD 28.3-49.2 mV) and group 3 (nasal PD > or =49.2 mV). Patients from group 1 had a higher forced vital capacity (FVC) than patients from groups 2 and 3 (76.5+/-22.4 versus 57.4+/-21.2 and 55.7+/-21.1% predicted, respectively, p<0.05) and a higher forced expiratory volume in one second (FEV1) (69.3+/-24.0 versus 42.5+/-22.4 and 42.2+/-21.4% pred, respectively, p<0.01). Among patients with severe mutations (deltaF508 homozygotes, or one deltaF508 mutation plus another "severe" mutation, or two "severe" mutations), patients from group 1 had a higher FVC, FEV1 and arterial oxygen tension than patients from groups 2 and 3 (p<0.05 for each comparison). The results show that in adult cystic fibrosis patients a normal basal nasal potential difference is related to milder respiratory disease, irrespective of the severity of the genotype.  相似文献   

13.
Genetic deficiency of the purine salvage enzyme adenosine deaminase (ADA) results in varying degrees of immunodeficiency, ranging from neonatal onset Severe Combined Immunodeficiency (SCID) to an adult onset immunodeficiency disorder. Multiple different mutations have now been identified in these immunodeficient patients. Additional mutations, initially identified in healthy individuals, abolish ADA in erythrocytes but retain 10-80% of activity in non-erythroid cells ('partial deficiency mutations'). In general, severity of disease correlates inversely with the amount of residual ADA expressed by the mutant enzymes and directly with the accumulation of the toxic metabolites deoxyATP and deoxyadenosine. We report two newly identified mutations (Y97C and L106V), both carried on the same allele of an immunodeficient patient who was diagnosed prenatally and successfully transplanted with haploidentical bone marrow. Based on the ability of mutant cDNAs to express ADA in vitro , the L106V mutation resulted in activity similar to 'partial' mutations (30% of normal) while the Y97C mutation resulted in detectable but markedly reduced activity (1.5% of normal). However, the presence of both mutations on the same allele virtually abolished detectable enzyme activity. Analysis of the crystallographic structure of ADA to understand the marked deleterious effect of the Y97C mutation suggested a previously unappreciated role of salt bridges in the catalytic mechanism of ADA. The patient was also heteroallelic for a previously described deletion of the promoter and exon 1. Testing of additional patients in whom we had not identified a mutation on the second allele revealed presence of this deletion in three of four patients tested. This deletion is therefore relatively common, accounting for 10% of almost 100 chromosomes studied by this and other laboratories, but is easily missed by currently used methods of mutation detection. Lastly, the finding of two mutations on the same allele that interact to reduce residual enzyme function emphasizes hazards in evaluating potential genotype-phenotype correlations in individuals analyzed only for the presence of single specific mutations.  相似文献   

14.
Variegate porphyria (VP) is a low penetrance, autosomal dominant disorder that results from partial deficiency of protoporphyrinogen oxidase (PPOX) activity caused by mutation in the PPOX gene. The rare homozygous variant of VP is characterized by severe PPOX deficiency, onset of photosensitization by porphyrins in early childhood, skeletal abnormalities of the hand and, less constantly, short stature, mental retardation and convulsions. We have identified PPOX mutations on both alleles of five of the 11 unrelated patients with homozygous VP reported to date. Two patients were homoallelic for missense mutations (D349A and A433P), while three were heteroallelic. Functional analysis by prokaryotic expression showed that the D349A and A433P and one missense mutation in each of the three heteroallelic patients (G358R in two patients and A219KANA) preserved some PPOX activity (9.5-25% of wild-type). Mutations on the other allele of the heteroallelic patients abolished or markedly decreased activity. There was no relation between genotype assessed by functional analysis and the presence or severity of non-cutaneous manifestations. The mutations were absent from 104 unrelated patients with autosomal dominant VP. Our findings define the molecular pathology of homozygous VP and suggest that mild PPOX mutations occur in the general population but have very low or no clinical penetrance in heterozygotes.  相似文献   

15.
Carnitine palmitoyltransferase II (CPT II) deficiency manifests as two different clinical phenotypes: a muscular form and a hepatic form. We have investigated three nonconsanguineous Japanese patients with CPT II deficiency. Molecular analysis revealed two missense mutations, a glutamate (174)-to-lysine substitution (E174K) and a phenylalanine (383)-to-tyrosine substitution (F383Y) in the CPT II cDNA. Transfection experiments in COS-1 cells demonstrated that the two mutations markedly decreased the catalytic activity of mutant CPT II. Case 1 (hepatic form) was homozygous for the F383Y mutation, whereas case 3 (muscular form) was homozygous for the E174K mutation. Case 2 and her brother, who were compound heterozygotes for E174K and F383Y, exhibited the hepatic phenotype. We also identified a novel polymorphism in the CPT2 gene, a phenylalanine (352)-to-cysteine substitution (F352C), which did not alter CPT II activity in transfected cells. It was present in 21 out of 100 normal alleles in the Japanese population, but absent in Caucasian populations. Genotyping with the F352C polymorphism and the two previously reported polymorphisms, V368I and M647V, allowed normal Japanese alleles to be classified into five haplotypes. In all three families with CPT II deficiency, the E174K mutation resided only on the F1V1M1 allele, whereas the F383Y mutation was observed on the F2V2M1 allele, suggesting a single origin for each mutation.  相似文献   

16.
OBJECTIVE: To determine an underlying genetic defect within the differential diagnosis of congenital multicore myopathy. BACKGROUND: A 13.5-year-old girl presented with congenital-onset facial and neck weakness, slowly progressive severe limb girdle and axial myopathy, respiratory weakness, cardiomyopathy, progressive joint contractures, lumbar lordosis, progressive external ophthalmoplegia with ptosis, and cataracts. Muscle biopsy at 3 years revealed type I fiber predominance and hypotrophy, multicores with a focal decrease in mitochondria and oxidative enzymes, and internal nuclei. METHODS AND RESULTS: Serum carnitine was decreased (total, 18.2 micromol/L; free, 11.7 micromol/L). Urine organic acids intermittently revealed very large amounts of ethylmalonic and methylsuccinic acids intermittently, with elevated butyrylglycine, 2-methylbutyrylglycine, and tiglylglycine. Fibroblast acylcarnitine profiles revealed marked butyrylcarnitine elevation. Electron-transferring flavoprotein-linked reduction enzymatic assay of fibroblasts with butyryl-coenzyme A (CoA) as substrate, after immunoinactivation of medium-chain acyl-CoA dehydrogenase activity, revealed a complete absence of short-chain acyl-CoA dehydrogenase (SCAD) activity. No SCAD protein was detectable with Western blot analysis. CONCLUSIONS: This patient expands the clinical phenotype of SCAD deficiency and emphasizes the need for its consideration in the differential diagnosis of progressive external ophthalmoplegia and congenital multicore myopathy.  相似文献   

17.
Carnitine palmitoyltransferase II(CPTII) deficiency manifests as two different clinical phenotypes: an adult form associated with muscular symptoms and an infantile form presenting with hepatocardiomuscular manifestations. We have investigated three Japanese patients with CPT II deficiency. Molecular analysis revealed two novel missense mutations, a glutamate (174)-to-lyine substitution (E174K) and a phenylalanine (383)-to-tyrosine substitution (F383Y) in the CPTII cDNA. Transfection experiments demonstrated that the two mutations reduced CPTII catalytic activity. We also identified a novel polymorphism in the CPTII gene, a phenylalanine (352)-to-cysteine substitution (F352C). According to an expression analysis this mutation did not alter CPTII activity. It was present in 21 out of 100 normal alleles in the Japanese population, but was not observed among Caucasians. Genotyping with the F352C polymorphism and the previously reported polymorphisms V368I and M647V allowed normal alleles to be classified into five haplotypes. In all three families, the E174K mutation resided only on F1V1M1 allele, while the F383Y mutation was observed on F2V2M1 allele, suggesting a single origin of each mutation.  相似文献   

18.
Glycogen storage disease type II (GSDII), an autosomal recessive myopathic disorder, results from deficiency of lysosomal acid alpha-glucosidase. We searched for mutations in an evolutionarily conserved region in 54 patients of differing phenotype. Four novel mutations (D645N, G448S, R672W, and R672Q) and a previously described mutation (C647W) were identified in five patients and their deleterious effect on enzyme expression demonstrated in vitro. Two novel frame-shifting insertions/deletions (delta nt766-785/insC and +insG@nt2243) were identified in two patients with exon 14 mutations. The remaining three patients were either homozygous for their mutations (D645N/D645 and C647W/C647W) or carried a previously described leaky splice site mutation (IVS1-13T-->G). For all patients "in vivo" enzyme activity was consistent with clinical phenotype. Agreement of genotype with phenotype and in vitro versus in vivo enzyme was seen in three patients (two infantile patients carrying C647W/C647W and D645N/+insG@nt2243 and an adult patient heteroallelic for G648S/IVS1-13T-->G). Relative discordance was found in a juvenile patient homozygous for the non-expressing R672Q and an adult patient heterozygous for the minimally expressing R672W and delta nt766-785/+insC. Possible explanations include differences in in vitro assays vs in vivo enzyme activity, tissue specific expression with diminished enzyme expression/stability in fibroblasts vs muscle, somatic mosaicism, and modifying genes.  相似文献   

19.
Junctional epidermolysis bullosa associated with pyloric atresia (EB-PA; OMIM 226730) is a rare autosomal recessively inherited disease in which mucocutaneous fragility is associated with gastrointestinal atresia. This disease is usually fatal within the first few weeks or months of life even following surgical correction of the intestinal obstruction. Recently, mutations in the genes encoding the epithelial integrin alpha6beta4 (ITGA6 and ITGB4) have been identified in several patients with EB-PA. We report two unrelated patients with this disease who have survived into early childhood with mild cutaneous involvement, in whom we have identified pathogenetic mutations in ITGB4. The first patient was a compound heterozygote for a splice site mutation in exon 30 (3793 + 1G-to-A) and a non-sense mutation in exon 36 (W1478X), and the second was a compound heterozygote for a missense mutation in exon 3 (C38R) and a 1 bp deletion in exon 36 (4776delG). Although the non-sense and deletion mutations are predicted to result in markedly reduced beta4 integrin mRNA levels, the presence of the missense or splice site mutation on the second allele may enable the synthesis of some functional, albeit perturbed, beta4 polypeptide. Determination of the molecular mechanisms in these two cases increases our understanding of EB-PA and may enable correlation between genotype and phenotype.  相似文献   

20.
Comprehensive analyses of mitochondrial (mt)DNA of a recipient of heart transplantation at age 7 because of severe cardiomyopathy revealed three germ line point mutations, each one in the 12S rRNA gene, in the CO1 gene and in the cytochrome b gene, respectively. As the somatic mutation, extensive fragmentation of mtDNA associated with 212 kinds of deletions was detected in contrast to 5 kinds in an age-matched negative control. A recipient's positive control having almost the same base-substitutions and mutations with the recipient except one in the CO1 gene also developed severe cardiomyopathy died at age 20. The close relation between phenotype and mtDNA genotype provides the basis of our understanding of cell death and premature ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号