首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This work deals with the dispersion and stabilisation of nanosized TiO2 particles in an aqueous medium as a first step in the preparation of spray-dried nanostructured powders.A colloidal route leading to the production of titania nanostructured feedstocks to obtain nanostructured powders was developed. The process was based on the production of homogeneous and concentrated TiO2 nanosuspensions dispersed in deionised water with a suitable control of pH and the use of an appropriate anionic dispersant. Concentrated suspensions could be obtained by mixing with an ultrasounds probe at different times depending on the dispersing conditions.Homogeneous suspensions prepared were then reconstituted by spray drying into free-flowing powders with an adequate granule size distribution for diverse purposes, such as atmospheric plasma spraying coatings.  相似文献   

2.
Lithium manganese oxide (LiMn2O4) has been synthesized by a spray pyrolysis method from the precursor solution; LiNO3 and Mn(NO3)2·6H2O were stoichiometrically dissolved into distilled water. The synthesized LiMn2O4 particles exhibited a pure cubic spinel structure in the X-ray diffraction (XRD) patterns, however they were spherical hollow spheres for various concentrations of precursor solution. Thus, the as-prepared LiMn2O4 particles were then ground in a mortar and dispersed into distilled water. To make a well dispersed slurry solution, a dispersion agent was also added into the slurry solution. The LiMn2O4 microparticles with a spherical nanostructure were finally prepared by a spray drying method from the slurry solution. The tap density of the LiMn2O4 microparticle prepared by a combination of spray pyrolysis and drying method was larger than that by a conventional spray pyrolysis method.The as-prepared samples were sintered at 750 °C for 1 h in air and used as cathode active materials for lithium batteries. Test experiments in the electrochemical cell Li|1 M LiClO4 in EC:DEC = 1:1|LiMn2O4 demonstrate that the sample prepared by the present method is a promising cathode active material for 4 V lithium-ion batteries at high-charge-discharge and elevated temperature operation. The LiMn2O4 compounds by the combination of spray pyrolysis and drying method are superior to that by the conventional spray pyrolysis method in terms of electrochemical characteristics and tap density.  相似文献   

3.
Fine particles of anatase were suspended in solutions of ammonium alum with Al2O3/TiO2 molar ratios from 0.1:1 to 7:1. By spray drying the suspensions and calcining the spray-dried powders, Al2O3-TiO2 composite particles were obtained. The results show that after the spray drying, coatings of ammomium alum are formed on the surface of the anatase particles, leading to composite precursor powders (CCPs) with larger particle sizes. Upon calcining the CCPs, ammomium alum pyrolyzes to amorphous Al2O3 and anatase transforms into rutile. Both are mainly responsible for the observed particle size reductions as well as the densification of each composite particle. The in-situ formed α-Al2O3 and rutile may have higher reactivities, forming aluminum titanate at 1150 °C, about 130 °C lower than the theoretical temperature for the formation of Al2TiO5 by solid reaction. The reaction between α-Al2O3 and rutile starts from the interface between the anatase and the alum coating and mainly takes place in the single particles formed by spray drying. The molar ratio of Al2O3 to TiO2 influences the final crystalline phases in the composite powders, but not stoichiometrically.  相似文献   

4.
In the present study, the spray drying process was used to prepare spherical composite powders from TiO2/mica and h-BN powders. The starting and the as-prepared powders were examined by X-ray diffraction, scanning electron microscopy, particle size analyzer, spectrophotometer, and oil absorption analysis. Particle size distribution, crystalline phases, whiteness, and oil absorption ability were analyzed in order to determine powder morphology. These powders were then mixed into linseed oil to prepare an emulsion for sunscreen protection application. The resultant emulsions were examined using UV–visible–near infra-red (NIR) spectroscopy, sun protection factor tester, and thermal conductivity tester. The experimental results show that spherical composite powder prepared by spray drying not only possess good oil and NIR absorption ability, but also thermal conductivity. The emulsion prepared by spray dried powder exhibits superior sunscreen protection performance compared to its starting counterparts.  相似文献   

5.
In this paper, the Al2O3-20 wt.%ZrO2 (8 wt.%Y2O3) feedstocks were fabricated and treated by spray drying, calcination, and plasma treatment technology. The morphology of feedstocks was characterized by scanning electron microscope (SEM). The phase structure and grain size were analyzed by X-Ray diffraction (XRD). The flowability and density were measured by Hall Flowmeter and density instrument, respectively. The sphericity and flowability of feedstocks treated by plasma flame increased greatly compared with that of the feedstocks without plasma treatment, and the particle surfaces were very smooth. The optimum flowability was obtained when the critical plasma spray parameter (CPSP) was 363. The compactness also increased greatly with the increment of CPSP, and the maximum value of compactness was got with CPSP of 325. Calcination can make the grain grow and plasma treatment can lead to the decrement of grain size. The phase structure of Al2O3 did not change, which was α-Al2O3 in the composites. The phase structure of ZrO2 (8 wt.%Y2O3) changed from t-phase to c-phase which was affected greatly by plasma treatment.  相似文献   

6.
Nanosized Li4Mn5O12 has been synthesized by a spray-drying-assisted solid state method. The effect of spray drying and drying temperature on the microstructure and electrochemical performance of the final products has been investigated. The microstructure of the products has been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The electrochemical performance of the products has been studied by galvanostatic cycling, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It has been found that the products prepared with a spray-drying pretreatment of the precursor exhibit a smaller grain size and a narrower size distribution than that prepared without the pretreatment. Among the three samples with a precursor pretreatment, that pretreated at 250 °C shows the best electrochemical performance due to the smallest grain size of below 50 nm and the narrowest size distribution.  相似文献   

7.
TiO2, TiO2/Ag and TiO2/Au photocatalysts exhibiting a hollow spherical morphology were prepared by spray pyrolysis of aqueous solutions of titanium citrate complex and titanium oxalate precursors in one-step. Effects of precursor concentration and spray pyrolysis temperature were investigated. By subsequent heat treatment, photocatalysts with phase compositions from 10 to 100% rutile and crystallite sizes from 12 to 120 nm were obtained. A correlation between precursor concentration and size of the hollow spherical agglomerates obtained during spray pyrolysis was established. The anatase to rutile transformation was enhanced with metal incorporations and increased precursor concentration. The photocatalytic activity was evaluated by oxidation of methylene blue under UV-irradiation. As-prepared TiO2 particles with large amounts of amorphous phase and organic residuals showed similar photocatalytic activity as the commercial Degussa P25. The metal incorporated samples showed comparable photocatalytic activity to the pure TiO2 photocatalysts.  相似文献   

8.
Fine-sized BaMgAl10O17:Eu2+ phosphor powders with plate-like morphology were prepared by spray pyrolysis process. The effects of ratio of BaF2 and Ba(NO3)2 used as the source materials of Ba component on the morphological and optical properties of the BaMgAl10O17:Eu2+ phosphor powders were investigated. BaF2 was used as the flux material as well as the source material of Ba component. The phosphor powders prepared from the spray solution with the same mole concentrations of BaF2 and Ba(NO3)2 had fine size, plate-like morphology and narrow size distribution. The addition of BaF2 as the source material of Ba component increased the photoluminescence intensities of the phosphor powders. The phosphor powders prepared from the spray solution with the ratios of BaF2 and Ba(NO3)2 larger than 1 had the similar photoluminescence intensities to that of the commercial product.  相似文献   

9.
Even though common spray drying has been widely used for drying food and related products, the effect of drying conditions of supercritical CO2 spray drying on the particle sizes of dried products has not been well studied. The objective of this study was to study the effect of drying conditions and design parameters on the particle sizes of biomaterials dried with supercritical CO2 spray drying. The ethyl cellulose (EC) microparticles were prepared with supercritical CO2 as the dry medium using an experimental spray-drying apparatus. This research studied the influences of spray nozzle diameter, mass ratio of gas to liquid, solution concentration, temperature, and pressure on the physical characteristics of ethyl cellulose microparticles. The results indicated that the average size of the dried particles ranged from 1.07 to 9.84 µm. The spray nozzle with 8-mm diameter produced smaller microparticles with narrower distribution than the 4-mm spray nozzle. The average particle size increased with the increase of the ratio of gas to liquid. Also, the average size and distribution of the microparticles increased with the rise of temperature and solution concentration but decreased with the increase of pressure.  相似文献   

10.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

11.
Calcium-based carbon dioxide sorbents were made in the gas phase by scalable flame spray pyrolysis (FSP) and compared to the ones made by calcination (CAL) of selected calcium precursors. Such flame-made sorbents consisted of nanostructured CaO and CaCO3 with twice as much specific surface area (40-60 m2/g) as the CAL-made sorbents. All FSP-made sorbents exhibited faster and higher CO2 uptake capacity than all CAL-made sorbents at intermediate temperatures. CAL of calcium acetate monohydrate resulted in sorbents with the best CO2 uptake among all CAL-made ones. At higher temperatures both FSP- and CAL-made sorbents (esp. from CaAc2·H2O) exhibited very high initial molar conversions (95%) but sintering contributed to grain growth that reduced the molar conversion down to 50%. In multiple carbonation/decarbonation cycles, the nanostructured FSP-made sorbents demonstrated stable, reversible and high CO2 uptake capacity sustaining maximum molar conversion at about 50% even after 60 such cycles, indicating high potential for CO2 uptake. The top performance of flame-made sorbents is best attributed to their nanostructure (30-50 nm grain size) that allows operation in the reaction-controlled carbonation regime rather than in the diffusion-controlled one when sorbents made with larger particles are employed.  相似文献   

12.
In this paper, a method combining hydrolysis of tetrabutyl orthotitanate (TBOT) and solvothermal reaction was first used to fabricate nanostructured Li2TiO3 tritium breeder ceramic pebbles. Initially, superfine nanostructured Li2TiO3 powders were synthesized with average particle size of about 10?nm, according to TEM. The surface area of precursor particles synthesized via this method was found to be 115.85?m2/g by BET analysis, which is much larger than that of the product obtained using traditional methods. The results showed that precursor particles had high sintering activity. XRD pattern revealed that the phase transition temperature for monoclinic phase Li2TiO3 prepared by this method was nearly 450?°C, which was the lowest phase transition temperature reported among all wet chemical methods to date. Subsequently, investigation of ceramic sintering demonstrated that Li2TiO3 ceramic pebbles with desired nano-crystalline sizes (27.98 ~ 55.03?nm) were obtained by sintering at 500 ~ 600?°C for 4?h. The possible mechanisms were proposed based on the reaction processes of TBOT hydrolysis, solvothermal reaction and sintering.  相似文献   

13.
Fine-sized LiNi0.8Co0.15Mn0.05O2 cathode particles with high discharge capacities and good cycle properties were prepared by spray pyrolysis from the polymeric precursor solutions. The cathode particles obtained from the spray solution without polymeric precursors had irregular morphology and hardly aggregated morphology. On the other hand, the cathode particles obtained from the spray solution with citric acid and ethylene glycol had fine size and regular morphologies. The cathode particles obtained from the spray solution containing adequate amounts of citric acid and ethylene glycol had several hundreds nanometer and narrow size distribution. The maximum discharge capacity of the cathode particles was 218 mAh/g when the excess of lithium component added to the spray solution was 6 mol% of the stoichiometric amount to obtain the LiNi0.8Co0.15Mn0.05O2 particles. The discharge capacities of the fine-sized LiNi0.8Co0.15Mn0.05O2 particles dropped from 218 to 213 mAh/g by the 50th cycle at a current density of 0.1 C.  相似文献   

14.
Non-transformable tetragonal scandia, yttria doped zirconia (SYDZ) nanopowders were prepared in large scale by the citric acid (CA) based gel method. The effect of ethylene glycol monobutyl ether (EGM):CA ratios and pH on the structure, morphology and SYDZ particle size was investigated. The microstructure of SYDZ was characterized by XRD, Raman scattering, TG–DTA, SEM, TEM, and FTIR analyses. The SYDZ nanopowders, synthesized with 1Zr4+:4EGM:4CA mole ratio in acidic medium (pH ∼1) at 700 °C, had an average diameter of 15±2 nm. Finally, air plasma spray (APS) coatings were produced from nanostructured SYDZ agglomerated powders.  相似文献   

15.
ZrO2@Al2O3 composite ceramic powders were prepared by solution combustion method with aluminum nitrate (Al (NO3)3) and 3?mol% yttria-stabilized tetragonal zirconia polycrystal (3Y- TZP) as the main raw materials, ammonium polyacrylate (PAA-NH4) as a dispersant, urea (CO (NH2)2) as a reducing agent. The effects of PAA-NH4 concentration and drying method on the microstructure and morphology of the ZrO2@Al2O3 powders were investigated. The results showed that when the concentration of PAA-NH4 was 1.5?wt%, and the molar ratio of Al (NO3)3 to CO (NH2)2 was 1:2, the ZrO2@Al2O3 powders with uniform grain size and high crystallinity could be synthesized by solution combustion drying method. Additionally, the abnormal growth of 3Y- TZP grain in ZrO2@Al2O3 was suppressed and the crystalline phase transformation trend (t-ZrO2 to m-ZrO2) was obviously decreased after sintering at 1600?°C.  相似文献   

16.
The hydrolysis of TiCl4 was achieved by using a dialysis membrane to make H+ and Cl penetrate out slowly, which produced hydrogel. By this method, no reactant is required and no by-product occurs. The hydrogel was dried by different methods and calcined to obtain nano-TiO2 powder. The samples were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), BET surface area and pore size distribution. For comparison, TiCl4 was also hydrolyzed to prepare nano-TiO2 by other methods such as heating and adding ammonia. The experiments indicate that hydrolysis and drying have important effects on the properties of product. The hydrogel obtained by dialysis hydrolysis is anatase with a higher phase transformation temperature in calcination and the gel washed with ethanol has better porosity and bigger specific area than the products prepared by other hydrolysis methods and the same washing. In this paper, the drying methods of washing with ethanol and azeotropic distillation with n-butanol were improved by an ensuing rewashing with cyclohexane containing a little of surfactant Span-80 and chemical dehydration with acetic oxide, which further improve the porosity and surface area of nano-TiO2 powder.  相似文献   

17.
TiO2–Ni(OH)2 bilayer electrodes were prepared by the cathodic electrodeposition of Ni(OH)2 layer on a TiO2/ITO substrate. The porous Ni(OH)2 layers were obtained at relatively high current densities (≥1.0 mA cm−2), and the particle size increased with increasing the deposition current density. A porous nanostructured TiO2–Ni(OH)2 bilayer was obtained at a current density of 1.0 mA cm−2. The effects of OH concentration in the electrolyte and surface structure in the Ni(OH)2 layer on storage of the oxidative energy of TiO2 were investigated. In our experimental conditions the oxidative energy storage of an UV-irradiated TiO2 photocatalyst in Ni(OH)2 was obviously enhanced in the electrolyte with 1.0 M OH. The porous nanostructured TiO2–Ni(OH)2 bilayer electrode showed the notably improved oxidative energy storage performance, resulting from its porous structure and nanostructured Ni(OH)2 particles. The TiO2–Ni(OH)2 bilayer electrode during UV irradiation exhibited much higher potentials and larger photocurrent than the TiO2/ITO electrode. The transition from Ni(OH)2 to NiOOH under UV irradiation proceeded in the potential range of −0.5 to −0.2 V, much more negative than the Ni(OH)2/NiOOH redox potential. A possible mechanism on the oxidative energy storage of an UV-irradiated TiO2 photocatalyst in Ni(OH)2 was proposed, and the related experimental results were discussed in terms of the suggested model.  相似文献   

18.
Nanostructured indium oxide (In2O3) thin film was prepared by solid-vapour deposition method under NH3 and Ar atmosphere. The influence of gas nature on the growth of In2O3 thin film was investigated in terms of structure, morphology and optical properties. X-ray diffraction, Raman spectroscopy and photoluminescence analyses indicated the formation of pure In2O3 phase with strong preferred orientation along c-axis, from cubic- to needles-like morphologies. The as-fabricated nanostructured In2O3 thin films with tailored morphology, enhanced crystallinity and optical quality can be used for gas sensing, solar cells and other potential applications. In addition, the potential use of NH3 as carrier gas for an efficient control of morphology/size and optical properties can be proposed for the fabrication of other nanostructured oxides.  相似文献   

19.
Nanocrystalline TiO2, CeO2 and CeO2-doped TiO2 have been successfully prepared by one-step flame spray pyrolysis (FSP). Resulting powders were characterized with X-ray diffraction (XRD), N2-physisorption, Transmission Electron Microscopy (TEM) and UV-Vis spectrophotometry. The TiO2 and CeO2-doped TiO2 nanopowders were composed of single-crystalline spherical particles with as-prepared primary particle size of 10-13 nm for Ce doping concentrations of 5-50 at%, while square-shape particles with average size around 9 nm were only observed from flame-made CeO2. The adsorption edge of resulting powder was shifted from 388 to 467 nm as the Ce content increased from 0 to 30 at% and there was an optimal Ce content in association with the maximum absorbance. This effect is due to the insertion of Ce3+/4+ in the TiO2 matrix, which generated an n-type impurity band.  相似文献   

20.
CeO2/ZnO nanostructured microspheres with an average diameter of about 3.8 μm were synthesized by a solid-stabilized emulsion route. The CeO2/ZnO nanostructured microspheres were characterized with SEM, XRD, CO2-TPD, BET measurement and size analysis. Based on the oxidative coupling reaction of methane with carbon dioxide as an oxidant, the catalytic performance of the CeO2/ZnO nanostructured microspheres was evaluated and compared with that of the CeO2/ZnO nanoparticles. The results showed that the surfaces of the CeO2/ZnO nanostructured microspheres consisted of petal-like structures with a petal thickness of about 90 nm and a petal depth of 0.4 μm to 0.9 μm. Using CeO2/ZnO nanostructured microspheres as catalysts for the oxidative coupling of methane with carbon dioxide, the conversion of methane corresponded with that using the CeO2/ZnO nanoparticles, while the CeO2/ZnO nanostructured microspheres had much longer operating life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号