首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘怡琳  李钰  余亚雄  黄哲庆  周强 《化工学报》2022,73(6):2612-2621
颗粒聚团等介尺度结构在气固两相流中普遍存在,这些介尺度非均匀结构直接影响气固流动特性及气固接触效率,进而影响气固相间传热、传质及化学反应过程。在更适合工业大尺度气固传热模拟的粗网格方法中缺乏准确度高、简单易用且可以考虑介尺度非均匀结构影响的传热模型。采用计算流体力学-离散单元法(CFD-DEM)研究了气固两相流相间传热,为了保证气固相间持续传热,采用了两种维持气固相间传热温差的方法,并讨论了两种方法的优缺点。方法一:给气相能量方程添加热源项;方法二:每间隔一段时间重置气相温度,重置温度后气固两相自由传热,两种方法中均保持固相温度不变。结果表明聚团界面位置的局部单位体积气固传热量最大,重置温度方法在稀相和界面位置的局部单位体积传热量与总单位体积传热量之比大于热源项方法,而在浓相位置的局部单位体积传热量与总单位体积传热量之比小于热源项方法。通过过滤CFD-DEM计算数据,为重置温度方法构建了双参数(过滤固含率、过滤尺度)传热系数修正因子模型,通过先验分析评价了模型的表现,研究表明所构建模型在过滤网格尺度为5~40倍颗粒直径范围内优于文献中已有的双参数模型。  相似文献   

2.
3.
Pneumatic conveying, employing the dense phase plug flow regimen, is largely used to transport bulk solids. This process permits the conveying of large amounts of material in economical manner with less particle and pipe degradation compared to dilute phase conveying. By using an experimental system with special measurement devices and different materials of construction and transport, the friction between the material being transported and the pipe wall, the actual motion of the particles was determined, and the degree of fluidization were estimated. This information permits more accurate modeling of dense phase plug flow providing basic parameters to insert in existing and developing models.  相似文献   

4.
非均匀气固两相系统中多尺度传质模型   总被引:1,自引:0,他引:1       下载免费PDF全文
王琳娜  李静海 《化工学报》2001,52(8):708-714
建立了适用于气固循环流化床的多尺度传质模型 .从过程与尺度的角度出发 ,将非均匀气固两相流中的传质过程分解为静态与动态的过程 ,并将前者分解为稀相内、密相内以及稀密相间 3个尺度下的传质 ;在用多尺度能量最小 (EMMS)模型求解已知物系性质和操作条件的非均匀气固两相流体动力学参数的基础上 ,借助于前人的研究结果 ,利用相对滑移速度、空隙率等参数求解传质系数 ,求得轴向的浓度场分布 ,并讨论非均匀两相流动结构对传质效率的影响  相似文献   

5.
在高13m大型循环流化床装置上,对φ150 mm×900 mm负压差立管内气固两相流的动态压力进行了轴向多点测量,并用标准偏差进行了分析,主要研究立管下料过程的动态传递特性.实验表明负压差立管内存在明显的压力脉动现象,这种压力脉动具有一定的传递性.颗粒质量流率比较小时是稀密两相共存流态,稀相区的压力脉动主要受进料流量振荡的影响,向下传递;密相区的压力脉动主要受立管的波动性排料影响,向上传递;随着颗粒质量流率的增加达到浓相输送流态时,上部是连续式浓相输送流态,下部是密相波浪式输送流态,立管的压力脉动主要受进口流量振荡和排料过程压缩气体作用,向下传递.对立管的压力脉动进行标准偏差分析表明脉动压力传递沿颗粒的流动方向上具有幅值增大特性.在立管内流态从稀密两相共存流态转变为浓相输送流态时,由于颗粒压缩气体分量最大,压力脉动幅值最大,减小或增加颗粒质量流率,压力脉动幅度均降低.  相似文献   

6.
Based on analysis of energy dissipation in the core region of gas-solid fluidized bed risers,a simplified model for determination of core-annulus solids mass transfer coefficient was developed according to turbulent diffu- sion mechanism of particles.The simulation results are consistent with published experimental data.Core-annulus solids mass transfer coefficient decreases with increasing particle size,particle density and solids circulation rate, but generally increases with increasing superficial gas velocity and riser diameter.In the upper dilute region of gas-solid fiuidized bed risers,core-annulus solids mass transfer coefficient was found to change little with the axial coordinate in the bed.  相似文献   

7.
The non-isothermal gas-solid flow through a U-bend of a pneumatic conveying dryer system is calculated using the commercial CFD program Fluent 6.1. Steady-state, incompressible and non-isothermal gas-solid flows are employed to simulate the cases. Variables studied include: particle diameter, particle density, solid loading ratio, feed gas temperature, heat flux through the wall, gas velocity and bend radius ratio on heat transfer phenomena between gas and solid particles. Validation is done by comparing calculation results with the available experimental data provided by Baughn et al. [J.W. Baughn, H. Iacovides, D.C. Jackson, B.E. Launder, Local heat transfer measurements in turbulent flow around a 180° pipe bend, Journal of Heat Transfer 109 (1) (1987) 43-48] and Depew and Farbar [C.A. Depew, L. Farbar, Heat transfer to pneumatically conveyed glass particles of fixed size, Journal of Heat Transfer 85 (1963) 164-172].In general, data validations of both cases show good agreement. The gas temperature decreases and the solid temperature increases along the axial direction of the pipe due to transfer of heat from the gas phase to the solid phase. The gas temperature decreases significantly at the outer bend wall due to an accumulation of particles, which causes much more energy to be transferred from the gas to solid phases. At the inner bend wall, the gas temperature decreases slightly but the solid temperature increases significantly due to a low concentration of particles. A U-bend significantly increases the local and area average Nu numbers, but not the mass average Nu number. The slip velocity and particle distribution are the major factors influencing the value of the mass average Nu number.  相似文献   

8.
Experiments of high‐pressure dense‐phase pneumatic conveying of pulverized coal with different mean particle sizes using nitrogen were carried out in an experimental test facility with a conveying pressure of up to 4 MPa. The effects of three representative operating parameters (solids‐to‐gas mass flow ratio, conveying pressure, mean particle size) on the total pressure drop were examined. The pressure drops across the horizontal and vertical bends were analyzed by experimental and analytical calculation. The results show that the pressure drop due to gas friction is of much less significance, while the pressure drop due to the solids friction component of the total pressure drop dominates. There exists a relationship between the pressure drop due to solids kinetic energy loss and mass flux of solids.  相似文献   

9.
In order to increase heat and mass transfer and to accelerate high temperature gas-solids reactions of fine powders, downflow tube-reactors have attracted growing attention. Short reaction times of fractions of a second require short term constant feeding of gas and solids followed by the continuous and rapid formation of homogeneous suspensions with low fluctuations in time to meet required mole ratios. The objective of the present study is the preparation of short-term constant, homogeneous gas-solid suspensions under gravitational flow conditions in downflow reactors. The dynamics of dispersing a very compact dense solids jet lo achieve a homogeneous gas-solid suspension was investigated in a semi-industrial test unit with a maximum solids throughput of 5 t/h and different tube geometries.  相似文献   

10.
In order to increase heat and mass transfer and to accelerate high temperature gas-solids reactions of fine powders, downflow tube-reactors have attracted growing attention. Short reaction times of fractions of a second require short term constant feeding of gas and solids followed by the continuous and rapid formation of homogeneous suspensions with low fluctuations in time to meet required mole ratios. The objective of the present study is the preparation of short-term constant, homogeneous gas-solid suspensions under gravitational flow conditions in downflow reactors. The dynamics of dispersing a very compact dense solids jet lo achieve a homogeneous gas-solid suspension was investigated in a semi-industrial test unit with a maximum solids throughput of 5 t/h and different tube geometries.  相似文献   

11.
12.
在15 m高的大型气固循环流化床上对内径90和42 mm的下料立管内气固两相流的动态压力进行了测量. 实验结果表明,负压差下料立管内的气固两相流动存在着低频压力脉动,压力脉动的强度可以用动态压力的标准方差(Standard deviation, Sd)来表征,且与立管下料的流动状态密切相关. 立管下料的流动状态依据颗粒质量流量通量的大小有浓相输送状态和稀密两相共存两种状态. 浓相输送状态的压力脉动强度较大,是下行颗粒压缩其夹带气体引起气固两相强烈相互作用导致的;稀密两相共存状态的压力脉动强度较小,是密相段排料的不稳定性和稀相段较弱的气固相互作用共同引起的. 立管下料的压力脉动强度随颗粒质量流量通量的增加而增大,对于浓相输送状态,在实验操作范围内[Gs'=550~850 kg/(m2×s)],压力脉动的强度与立管下料质量流量通量近似成Sd=0.00875Gs'-4.77的线性关系.  相似文献   

13.
气固两相流强化传热研究进展   总被引:1,自引:1,他引:1       下载免费PDF全文
刘传平  李传  李永亮  丁玉龙  王立 《化工学报》2014,65(7):2485-2494
在气流中加入颗粒,形成气固两相流。根据气流速度的不同,气固两相流分为鼓泡流态化、快速流态化、气力输送等形式。不同的流动形态,两相流内颗粒浓度及颗粒的运动规律不同,其传热特点也存在差异。通过回顾几种多相流流态的传热特点,总结了多相流与传热面换热的影响因素、气固两相流的传热机理与模型。气固两相流中颗粒浓度、颗粒运动对其传热起决定性作用,而操作参数(气流速度、床层压力、床层温度等)则主要通过改变颗粒浓度和颗粒运动影响传热。此外,通过气固两相流强化传热的应用实例--气固两相流与填充床的热交换,分析了颗粒在对流换热中所起的作用,并进一步提出了今后研究方向和难点所在。  相似文献   

14.
An experimental study of convective heat transfer from hot air to the solid charge and walls in a non-fired rotary kiln is reported. Ottawa sand was heated by passing it counter-current to a flow of preheated air in a 2.5 m × 0.19 m I.D. rotary kiln. Axial temperature profiles of gas, wall and solids were measured. Local and average convective heat transfer coefficients from gas to solids and from gas to wall were determined assuming plug flow of gas and solids. Solid feed rates to 1750 kg/m2 h and air rates to 3300 kg/m2 h were investigated at rotational speeds to 6 r/min, holdup ratios to 17% and gas temperatures from 350–590 K. The gas/solids convective coefficient was found to depend on the gas through-put and to a lesser extent on solids holdup and rotational speed. Over the range tested, the angle of kiln inclination, solids throughput and particle size showed no significant effect on heat transfer. Gas/wall coefficients were about a factor of ten below gas/solid coefficients. Heat transfer results are compared to the limited data available in the literature, and to commonly used equations. Correlations of the experimental data on gas/solids, and gas/wall coefficients are presented; data from the literature on the wall/solids heat transfer coefficient are summarized.  相似文献   

15.
Flow behavior of gas and solids is simulated in combination the gas-solid two-fluid model with a cluster structure-dependent (CSD) drag coefficient model. The dispersed phase is modeled by a Eulerian approach based upon the kinetic theory of granular flow (KTGF) including models for describing the dispersed phase interactions with the continuous phase. The drag forces of gas-solid phases are predicted from the local structure parameters of the dense and dilute phases based on the minimization of the energy consumed by heterogeneous drag. The cluster structure-dependent (CSD) drag coefficients are incorporated into the two-fluid model to simulate flow behavior of gas and particles in a riser. Simulation results indicate that the dynamic formation and dissolution of clusters can be captured with the cluster structure-dependent drag coefficient model. Simulated solid velocity and concentration of particles profiles are in reasonable agreement with experimental results.  相似文献   

16.
This paper presents an integrated reaction engineering based mathematical model for clinker formation in cement industry. Separate models for pre-heater, calciner, rotary kiln and cooler were initially developed and coupled together to build an integrated simulator. Appropriate models for simulating gas-solid contact and heat transfer in pre-heaters were developed. Calciner was modeled by considering simultaneous combustion of coal particles and calcination of raw meal. Complex heat transfer and reactions (solid-solid, gas-solid and homogeneous reactions in gas phase) in rotary kiln were modeled using three sub-models coupled to each other. Solid-solid reactions in the bed region of the kiln were modeled using pseudo-homogeneous approximation. Melting of solids in the bed and formation of coating within the kiln were accounted. Clinker cooler was simulated by developing a two-dimensional model to capture cross-flow heat transfer between air and hot clinkers. The individual models were coupled with each other via mass and energy communication through common boundaries. The coupled model equations were solved iteratively. The model predictions agree well with the observations and experience from cement industry. The model was used to gain better understanding of influence of operating conditions on energy consumption in cement plant. Several ways for reducing energy consumption were computationally investigated. The integrated model, the developed software RoCKS (for Rotary Cement Kiln Simulator) and results presented here will be useful for enhancing our understanding and for enhancing the performance of clinker manufacturing.  相似文献   

17.
华蕾娜  赵虎  李军  王军武  朱庆山 《化工学报》2016,67(8):3251-3258
采用双流体模型对设置竖直隔板的气固密相流化床中非球形颗粒的运动进行了模拟,颗粒形状的影响由相间曳力模型考虑,重点考察壁面处颗粒边界条件的影响。同时进行了实验室规模三维流化床的流化实验,以验证模型的有效性。通过压降轴向分布、颗粒浓度径向分布以及物料出口处颗粒质量流率功率谱估计等定量分析,结果表明:对不设置内构件的自由床,壁面反射系数对系统宏观流动特性影响较小,而对壁面处局部颗粒运动影响较大;对壁面面积大幅增加的内构件床,壁面反射系数可显著改变气体和颗粒的运动特征,取值需控制在适当范围内。  相似文献   

18.
在线性非平衡区域,对熵产率方程进行了相位拓展,建立了流动换热熵流变化与体系总熵产之间的关系。结果表明,熵产越小时熵流越大,则换热强度越大。当传热与传质均为自发过程,质量流与热流之间同相位时,两者的相位差越小,流动换热的强度越大,它反映了两个正熵产率过程间能量传递的场协同机制;当传热与传质分别为非自发及自发过程,质量流与热流之间反相位时,两者的相位差越大,流动换热的强度越大,它反映了正熵产率过程与负熵产率过程间能量转换的热力学耦合机制。质量流与热流之间由同相位到反相位,分别对应着场协同时的能量传递机制及热力学耦合时的能量转换机制,共同反映了体系流动换热时能量传递转换的最小熵产原理。  相似文献   

19.
Capacitive measurement principles offer a non-invasive approach to determine particle velocity as well as particle concentration in pneumatic conveying. In order to assess the quality of a reconstruction method, it is mandatory to know the prevailing velocity and concentration profiles. For particulate bulk solids transportation, accurate reference systems are either not available or very expensive. Based on measurement data, a signal model of the particle flow is developed for dilute phase and dense phase conveying. These models are used to demonstrate the applicability of proposed algorithms for parameter determination — a cross-correlation technique for dilute phase and a two-step approach using the Fourier transform for dense phase.  相似文献   

20.
In the present study, an improved numerical heat transfer model has been developed for a rotary kiln used for drying and preheating of wet iron ore. The present model includes radiation exchange among hot gas, refractory wall and the solid surface, transient conduction in the refractory wall, and mass and energy balances of the hot gas and the solids. The contribution of gas convection has also been taken into account in terms of a fraction of the radiative heat transfer to the inner refractory wall and the solid surface. The computer results show that the present model can predict the length of the kiln as well as axial solid and gas temperature distributions with reasonably good accuracy. A detailed parametric study reveals that a good design of a rotary kiln requires medium gas flow rate, small angle of inclination and low rotational speed of the kiln.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号