首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(24):34521-34528
Aiming at the problem that power density and energy density are difficult to obtain simultaneously under low field, a novel composition (1-x)Na0·5Bi0·5TiO3-xBaZn1/3Ta2/3O3((1-x)NBT-xBZT) was designed and fabricated via solid-state methods. With the addition of BZT, the crystal lattice, structural symmetry, grain size, and dense degree were all increased proved by XRD, Raman, and Archimedes drainage method et al. Because of the enhancement of relaxor behavior, the x=0.10 sample displayed a high permittivity εr of 2871±15% and a low dielectric loss tan δ ≤ 0.025 in the wide temperature range of 60–400 oC. This ceramic also showed maximum recoverable energy density Wd (2.07 J/cm3) with high efficiency η (71.5%) under a low field of 150 kV/cm. Moreover, pulse discharge testing proved that this ceramic possessed both a significant discharge energy density WD (0.96 J/cm3) and a record high power density PD (108.54 MW/cm3). This work provided a promising material for high power and energy applications.  相似文献   

2.
The specific rates of breakage of particles in a tumbling ball mill are described by the equation Si = axαi(Q(z), where Q(z) is the probability function which ranges from 1 to 0 as particle size increases. This equation produces a maximum in S, and the particle size of the maximum is related to ball diameter by xm = k1d2. The variation of a with ball diameter was found to be of the form a = k2/d1.5. Both k1 and k2 vary with mill diameter, and simple power laws have been assumed, k1D0.1, k2D0.6. If it is also assumed that the mean overall values of Si for a mixture of balls is the weighted mean of Si values for each ball size, equations are derived for calculating this mean value. As an example, the results are used in a mill simulation to show the quantitative effect of different ball mixes in a two-compartment cement mill versus a uniform mix over the whole mill.  相似文献   

3.
《Ceramics International》2022,48(18):26466-26475
Sodium niobate energy storage ceramics with good environmental performance are widely used in electric power conversion and pulse power system, large energy storage density and high efficiency, huge power density and charge and discharge faster. In this work, (1-x)NaNbO3-xBi(Ni2/3Nb1/6Ta1/6)O3 [(1-x)NN-xBNNT] (0.12 ≤ x ≤ 0.18) ceramics system were prepared by solid state reaction method. By introducing Bi(Ni2/3Nb1/6Ta1/6)O3 (BNNT), a relaxation strategy was constructed, which significantly improved the energy storage properties of NaNbO3 (NN) based ceramics. Finally, comparatively high recoverable energy density (Wrec) of 3.43 J/cm3 and large energy storage efficiency (η) of 83.3% were obtained in 0.86NN-0.14BNNT ceramics. Besides discharge energy density (Wd) of 0.69 J/cm3, ultra fast charge-discharge rate (t0.9) of 55 ns, the power density (PD) of 70.66 MW/cm3 and the current density (CD) of 883.23 A/cm2 were also observed in ceramic.  相似文献   

4.
《Ceramics International》2023,49(12):19701-19707
It is difficult to obtain high polarization strength and high breakdown strength synchronously, resulting in the drawback of lower energy storage density, which inhibits commercial application of energy storage materials. We have successfully prepared (1-x)(0.93Bi0.5Na0.5TiO3-0.07CaSnO3)-xSrTiO3 (BNT–CS–xST) ceramics by solid-state method. The presence of polymorphic nanodomains and the large electric displacement generated by the high charge Sr2+-Sr2+ ion pairs help to delay saturation polarization (Pm ∼ 48.64 μC/cm2 at 315 kV/cm). In addition, the breakdown field strength (Eb) is increased by grain refinement and increasing the band gap. It is noteworthy that a high recoverable energy storage density (Wrec = 4.2 J/cm3) and a great efficiency (η = 88%) were achieved simultaneously in BNT–CS–0.5ST ceramic. Moreover, excellent charge-discharge performance was also achieved, with a discharge energy density Wd of 2.2 J/cm3, a current density CD of 1724 A/cm2 and a power density PD of 250 MW/cm3. The study demonstrates that the great potential of BNT–CS–xST ceramics in power storage devices and provides an effective strategy for designing ceramics dielectric capacitors with excellent performance.  相似文献   

5.
《Ceramics International》2020,46(13):21336-21342
Li3Mg2(Nb1-xWx)O6+x/2 (0 ≤ x ≤ 0.08) ceramics were synthesized by the solid-state reaction route. The effects of W6+ substitution on the phase composition, microstructure and microwave dielectric properties of Li3Mg2NbO6 ceramics were investigated systematically. The XRD results showed that all the samples formed a pure solid solution in the whole doping range. The SEM iamges and relative density revealed the dense structure of Li3Mg2(Nb1-xWx)O6+x/2 ceramics. The relationship between the crystal structure and dielectric properties of Li3Mg2(Nb1-xWx)O6+x/2 ceramics was researched through polarizability, average bond valence, and bond energy. The substitution of W6+ for Nb5+ in Li3Mg2(Nb1-xWx)O6+x/2 ceramics significantly promoted the Q × f values. In addition, the increase of W6+ content improved the thermal stability of the Li3Mg2(Nb1-xWx)O6+x/2 ceramics. The Li3Mg2(Nb0.94W0.06)O6.03 ceramics sintered at 1175 °C for 6h possessed excellent properties: εr ~ 15.82, Q × f ~ 124,187 GHz, τf ~ −18.28 ppm/°C.  相似文献   

6.
Dielectric capacitors play an increasingly important role in power systems because of their fast charging and discharging speed. Applications are usually limited due to the low Wrec. We design materials with high values of ΔP(Pmax-Pr) and recoverable energy storage density(Wrec) from the high entropy perspective. Two single phases with a large Curie temperature Tc difference have been selected, which leads to the enlarged entropy. The ceramics (Bi0.85Nd0.1Sm0.05)1-xBax)(Fe1-xTix)O3(BNSBFTx) are prepared by the solid-state reaction. As x increases, the corresponding configuration entropy(Sconfig) goes from 1.4 R to 1.52 R. The increased entropy destroys the long-range order, accompanied by the reduced remanent polarization(Pr) and the improved Wrec. The Wrec of BNSBFT0.5 ceramics reaches 4.9 J/cm3 at a low field of 250 kV/cm. Both temperature change(∼ 0.5% from 30 °C to 140 °C) and frequency variation(∼ 4.8% from 1 Hz∼50 Hz) in Wrec show excellent stability.  相似文献   

7.
《Ceramics International》2020,46(8):11549-11555
BiFeO3–BaTiO3 (BF-BT)-based lead-free ferroelectric ceramic has attracted immense interest in energy storage applications due to its great spontaneous polarization (Pmax) strength. However, high remanent polarization (Pr) has become a serious obstruction for its practical application. In this work, Sm ions were doped into 0.67BiFeO3-0.33BaTiO3 (0.67Bi1-xSmxFeO3-0.33BaTiO3, BSxF-BT) to tailor the structure and energy storage properties. It was found that the doping of Sm ions effectively reduced Pr by enhancing the relaxor behavior of BF-BT ceramic, which produce an enhancement in the energy storage performance. Large recoverable energy storage density Wrec of 2.8 J/cm3 with moderate energy storage efficiency η of 55.8% (200 kV/cm) were achieved in the ceramics with x = 0.1. Moreover, the energy storage capabilities exhibited good stability at temperature (20–95 °C) and frequency (0.1–50 Hz). Furthermore, the ceramic also possessed a predominant discharge speed with a discharge time less than 0.1 μs in a circuit with a load of 200 Ω. These results showed that the Wrec and η of BF-BT ceramic could be availably promoted by the doping of Sm ions, which may be helpful for the enhancement of energy storage performance of BF-BT-based ceramics.  相似文献   

8.
《Ceramics International》2023,49(4):6077-6085
Solid-phase method was used to synthesize MgMo1-xWxO4 (x = 0–0.15) ceramics. The influences of substitution Mo6+ with W6+ on crystal structure, vibration characteristics and microwave dielectric properties of MgMo1-xWxO4 ceramics were comprehensively studied. X-Ray diffraction illustrated all samples exhibit single-phase monoclinic wolframite structure when x = 0–0.15, in which W6+ replaces Mo6+ sites formed solid solution. W6+ effectively improves sintering properties of the MgMoO4, the average grain size and relative density were increased. Raman characterization reveals that suitable W6+ substitution amount leads to reduction of v1 Ag peaks FWHM and the enhancement of specific v3 Ag peak for Mo/WO4 tetrahedron, which improves the ordered distribution of the crystal structure. The above combined effect results in the increased Q × f value, but has little influence of W6+ substitution on εr and τf for MgMoO4. When x = 0.09, MgMo0.91W0.09O4 ceramic sintered at 1050 °C has optimal microwave dielectric performance: εr = 7.21, Q×f = 90,829 GHz, τf = ?67 ppm/°C.  相似文献   

9.
In this study, optimization of some parameters of stirred mill on ultra-fine grinding of refractory Au/Ag ores was performed. A three-level Box-Behnken design combining a response surface methodology (RSM) with quadratic programming (QP) was employed for modelling and optimization of some operating parameters in ultra-fine grinding. Grinding tests were carried out in a laboratory scale pin-type vertical stirred mill. The relationship between the response, i.e. d80 size, and four grinding parameters, i.e. ball diameter, grinding time, ball charge ratio and stirrer revolution was presented as empirical model equations. Analysis of variance showed a high coefficient of determination value (R2 = 0.9698), thus ensuring a satisfactory of the second-order regression model with the experimental data.The model equations were then optimized using the quadratic programming method to minimize for d80 size within the experimental range studied. The optimum conditions were found to be 1.61 mm for ball diameter, 11.50 min for grinding time, 80% for ball charge ratio and 745 rpm for stirrer revolution for this grinding process.In order to verify the improvement of grinding performance using the optimal level of control factors three verification experiments were conducted, and the results for d80 was 3.37 μm, which were smaller than those obtained in the initial tests.  相似文献   

10.
《Ceramics International》2023,49(5):7196-7207
We report here a case of combination reaction between MoSe2 and WSe2 in certain proportions to improve electrochemical performance of Mo1-xWxSe2 compound materials. Two-dimensional (2D) Mo1-xWxSe2 flower-like crystals (x = 0, 0.25, 0.5, 0.75, 1) were synthesized using a solution synthesis method, and then Mo1-xWxSe2-based electrodes were prepared using a powder pellet method. Their structure and electrochemical performance were respectively measured by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectrometer (XPS), scanning electron microscope (SEM), and electrochemical workstation. The results indicate that only Mo0.25W0.75Se2-based electrode (x = 0.75), compared with other electrodes, delivers excellent specific capacity and stability with the capacity retention of 74.4% after 5000 charging-discharging deep cycles at the current density of 2 A g?1 in 1.0 mol/L KOH aqueous electrolyte, and exhibits a Coulombic efficiency almost 100% after 5000 cycles. This phenomenon is attributed to a situation that Mo0.25W0.75Se2 active material has a quite different electronic band structure from the other remaining materials. It is therefore concluded that the combination reaction enables Mo1-xWxSe2 composite materials to realize their potential in electrochemical energy storage.  相似文献   

11.
Y2−xLaxW3O12 solid solutions were successfully synthesized by the solid state reaction method. The microstructure, hygroscopicity and thermal expansion property of the resulting samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and thermal mechanical analysis (TMA). Results indicate that the structural phase transition of the Y2−xLaxW3O12 changes from orthorhombic to monoclinic with increasing substituted content of lanthanum. The pure phase can form for 0≤x≤0.4 with orthorhombic structure and for 1.5≤x≤2 with monoclinic one. High lanthanum content leads to a low relative density of Y2−xLaxW3O12 ceramic. Thermal expansion coefficients of the Y2−xLaxW3O12 (0≤x≤2) ceramics also vary from −9.59×10−6 K−1 to 2.06×10−6 K−1 with increasing substituted content of lanthanum. The obtained Y0.25La1.75W3O12 ceramic shows almost zero thermal expansion and its average linear thermal expansion coefficient is −0.66×10−6 K−1 from 103 °C to 700 °C.  相似文献   

12.
《Ceramics International》2020,46(9):13159-13169
Lead-free perovskite dielectric materials for capacitors have received wide concern in recent years, but their energy storage density and efficiency still cannot meet the growing application demand for practical applications. In this work, we prepared a lead-free relaxor ferroelectric ceramic of (1-x)Bi0.47Na0.47Ba0.06TiO3-xSr(Zr0.8Nb0.16)O3, which was synthesized via a normal solid-state route. The microstructure, dielectric properties and energy storage behavior of the ceramics were explored. The ceramics can be well sintered and situated in the region where rhombohedral and tetragonal phases coexist. The addition of Sr(Zr0.8Nb0.16)O3 (SZN) significantly extends the dielectric-temperature plateau between Ts and Tm and reduces the remnant polarization Pr, but the large saturation polarization Ps is still maintained. Besides, the doping of SZN enhances the relaxation of the material and increases the dielectric breakdown strength (DBS) from 50 kV/cm (x = 0) to 100 kV/cm (x = 0.04 and 0.06). Therefore, the ceramic with x = 0.06 exhibits a high discharging efficiency (η) of 71.1% and energy density (W) of 1.56 J/cm3 at 100 kV/cm and shows the superior thermal stability with the changes in recoverable energy density (Wrec) and η of less than 10% and 30% at the temperature range of 25–180 °C and the excellent frequency stability with the variations of Wrec and η of less than 1.8% and 1% at the frequency range of 10 Hz–100 Hz.  相似文献   

13.
《Ceramics International》2016,42(5):5718-5730
Modified ceramic compositions of Bi3.79Er0.03Yb0.18Ti3−xWxO12 with fixed Er and Yb content, and a varying W content (x=0.0, 0.01, 0.03, 0.06 and 0.10) are prepared. The site selectivity of Er3+, Yb3+, and W6+ cations is analyzed, and their influence on the electrical and light up conversion properties is studied. Formation of single phase orthorhombic structure is confirmed with enhanced grain growth up to x=0.03, and for (x≥0.04–0.10) the grain growth is inhibited, and the orthorhombic distortion is relaxed. Raman spectroscopy reveals W6+ cation substitutes preferentially at the B-site replacing Ti4+ ions in the Bi4Ti3O12 lattice structure. Increasing W6+ donor concentration reduces the conductivity effects by lowering the oxygen vacancies. Reduced dielectric losses (tan δ=0.003) and dispersion with frequency in the range (10−2–10 Hz) are observed, and improvements in the remnant polarization (2Pr=28.86 μC/cm2) are seen up to an optimum content of x=0.03. At higher W content (x>0.03), the properties tend to degrade due to structural relaxation and microstructural changes. Up conversion photoluminescence (UC-PL) under 980 nm excitation shows strong emission in the green and red bands due to enhanced crystal field around the Er3+ ions for an optimum W content of x=0.06. A weak blue emission band around (~492 nm) is observed by cooperative emission (CE) due to radiative relaxation of an excited Yb–Yb pair from a virtual level. Variation of UC emission intensity with pump-power confirms a two-photon mechanism for the up conversion process.  相似文献   

14.
The relationship between enhanced dielectric property and structural distortion in tungsten bronze structure ceramics was discussed in this work. The ceramics with the composition of (Ba1-xCax)2NaNb5O15 (x = 0, 0.1, 0.2, 0.3, 0.4) were fabricated via conventional solid-state method. All ceramics were pure without secondary phase and the distinct lattice distortion in structure was testified by Rietveld XRD refinement. Compared with the un-doped composition, the maximum polarization and energy storage density were strongly enhanced according to the ferroelectric property measurements, which were contributed to the distortion of NbO6 octahedron induced by the variation of ionic radius. The actually pulsed charge-discharge property of x = 0.3 ceramic was tested, whist excellent power density (PD = 35.106 MV/cm3) and discharge energy density (Wd = 0.29 J/cm3) were obtained at 100 °C under 120 kV/cm, revealing the potential for application of Ba2NaNb5O15 system-based ceramics in harsh environment.  相似文献   

15.
《Ceramics International》2020,46(14):22452-22459
Relaxor ferroelectrics have attracted much attention as electric energy storage materials for intermittent energy storage because of their high saturated polarization, near-zero remnant polarizations, and considerable dielectric breakdown strength (BDS). Despite the numerous efforts, the dielectric energy storage performance of relaxor ferroelectric ceramics is incomplete or unsatisfactory. The enhancement of recoverable energy storage density Wrec usually accompanies with the sacrifice of discharge-to-charge energy efficiency η; therefore, it is an important issue to achieve high recoverable Wrec and large efficiency η simultaneously. In this work, the (1-x)BaTiO3-xBi(Zn1/2Zr1/2)O3 (abbreviated as BT-100xBZZ, 0 ≤ x ≤ 0.20) ferroelectric ceramics were prepared using the conventional solid-state reaction method. The phase structure, microstructural morphology, dielectric and ferroelectric properties, relaxation behaviors, and energy storage properties of BT-BZZ ceramics were investigated in detail. X-ray powder diffraction, dielectric spectra, and ferroelectric properties confirm the transformation of tetragonal phase for normal ferroelectrics (BT) to pseudo-cubic phase for relaxor ferroelectrics (BT-8BZZ). A high recoverable energy storage density Wrec of 2.47 J/cm3 and a large energy efficiency η of 94.4% are simultaneously achieved in the composition of BT-12BZZ, which presents typical weakly coupled relaxor ferroelectric characteristics, with an activation energy Ea of 0.21 eV and a freezing temperature Tf of 139.7 K. Such excellent energy storage performance suggests that relaxor ferroelectric BT-12BZZ ceramics are promising dielectric energy storage materials for high-power pulsed capacitors.  相似文献   

16.
To develop environment-friendly dielectric capacitors with low working electric field and wide useable temperature, in this work, we fabricate (1-x)Na0.46Bi0.54TiO3- xBaSnO3((1-x)NBT-xBSN) lead-free relaxor ferroelectric ceramics by adding BaSnO3 into Na0.46Bi0.54TiO3 matrix. BSN exhibits slim polarization-electric field (P-E) loops, small remnant polarization (Pr) and good temperature stability because of its room-temperature paraelectric characteristics, and has different cation ionic radii with Na0.46Bi0.54TiO3. Therefore, when BSN is introduced into NBT, the relaxor behavior of the (1-x)NBT-xBSN ceramics is more pronounced and the P-E loops are much slimmer. Besides, because the substitution of Ba2+ ions with higher valence for Na+ ions neutralizes the hole carriers, which are caused by the volatilization of Na2O, the resistivity and breakdown strength are improved with increasing BSN content. As a consequence, at x = 0.30, the ceramic exhibits simultaneously a large recoverable energy density (Wrec) of 1.51 J/cm3 and high energy efficiency (η) of 81.2% at a low driving electric field of 145.3 kV/cm because of the collaborative enhancement effect of the high breakdown strength and low remnant polarization. More interestingly, variations of the Wrec and the η for this kind of ceramic are respectively as small as 10% and 0.8% over a wide temperature range of 20–140 °C, demonstrating superior temperature stability. In this report, we provide a new and efficient way for designing and fabricating environment-friendly dielectric capacitors with good reliability and superior high-temperature energy storage capacity.  相似文献   

17.
《Ceramics International》2015,41(8):9873-9877
Solid solutions of In2−xScxW3O12 (0≤x≤2) were successfully synthesized using the solid state reaction method. Effects of substituted scandium content on the phase composition, microstructure, phase transition temperatures and thermal expansion behaviors of the resulting In2−xScxW3O12 (0≤x≤2) samples were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermal mechanical analyzer (TMA). Results indicate that the obtained In2W3O12 ceramic undergoes a structure phase transition from monoclinic to orthorhombic at 248 °C. This phase transition temperature of In2W3O12 can be easily shifted to a lower temperature by partly substituting the In3+ with Sc3+. When the x value increased from 0 to 1, the phase transition temperatures of In2−xScxW3O12 (0≤x≤2) samples decreased from 248 to 47 °C. All the In2−xScxW3O12 (0≤x≤2) ceramics show fine negative thermal expansion below their corresponding phase transition temperatures. The negative thermal expansion coefficients of the In2−xScxW3O12 (0≤x≤2) ceramics change in the range from −1.08×10−6 °C−1 to −7.13×10−6 °C−1.  相似文献   

18.
This paper proposes a method for the composition and synthesis of lead zirconate titanate (PZT) piezoelectric ceramic for use in energy harvesting systems. The proposed material consists of (1?x)Pb(Zr0.53Ti0.47)O3xBiYO3 [PZT–BY(x)] (x=0, 0.01, 0.02, 0.03, 0.04, and 0.05 mol) ceramics near the morphotropic phase boundary (MPB) region, prepared by a solid-state mixed-oxide method. The optimum sintering temperature was found to be 1160 °C, which produced high relative density for all specimens (96% of the theoretical density). Second phases were found to precipitate in the composition containing x≥0.01 mol of BY. It is shown that the addition of BY inhibits grain growth, and exhibits a denser and finer microstructure than those in the un-doped state. Fracture surface observation revealed predominant intergranular fracture for x=0 and x=0.01, while a mixed mode of transgranular and intergranular fracture appeared for x≥0.02. The optimal doping level was found to be x=0.01, for which a dielectric constant (K33T) of 750, a Curie temperature (TC) of 373 °C, a remnant polarization (Pr) of 50 µC/cm2, a piezoelectric constant (d33) of 350 pC/N, and an electro-mechanical coupling factor (kp) of 65% were obtained. In addition, the piezoelectric voltage constant (g33), and transduction coefficient (d33×g33) of PZT–BY(x) ceramics have been calculated. The ceramic PZT–BY(0.01) shows a considerably lower K33T value, but higher d33 and kp. Therefore, the maximum transduction coefficient (d33×g33) of 18,549×10?15 m2/N was obtained for PZT–BY(0.01). The large (d33×g33) indicates that the PZT–BY(0.01) ceramic is a good candidate material for energy harvesting devices.  相似文献   

19.
Dielectric capacitors with decent energy storage and fast charge-discharge performances are essential in advanced pulsed power systems. In this study, novel ceramics (1-x)NaNbO3-xBi(Ni2/3Nb1/3)O3(xBNN, x = 0.05, 0.1, 0.15 and 0.20) with high energy storage capability, large power density and ultrafast discharge speed were designed and prepared. The impedance analysis proves that the introducing an appropriate amount of Bi(Ni0·5Nb0.5)O3 boosts the insulation ability, thus obtaining a high breakdown strength (Eb) of 440 kV/cm in xBNN ceramics. A high energy storage density (Wtotal) of 4.09 J/cm3, recoverable energy storage density (Wrec) of 3.31 J/cm3, and efficiency (η) of 80.9% were attained in the 0.15BNN ceramics. Furthermore, frequency and temperature stability (fluctuations of Wrec ≤ 0.4% over 5–100 Hz and Wrec ≤ 12.3% over 20–120 °C) were also observed. The 0.15BNN ceramics exhibited a large power density (19 MW/cm3) and ultrafast discharge time (~37 ns) over the range of ambient temperature to 120 °C. These enhanced performances may be attributed to the improved breakdown strength and relaxor behavior through the incorporation of BNN. In conclusion, these findings indicate that 0.15BNN ceramics may serve as promising materials for pulsed power systems.  相似文献   

20.
A new series of rare earth solid solutions Sc2−xYxW3O12 was successfully synthesized by the conventional solid-state method. Effects of doping ion yttrium on the crystal structure, morphology and thermal expansion property of as-prepared Sc2−xYxW3O12 ceramics were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TG), field emission scanning electron microscope (FE-SEM) and thermal mechanical analyzer (TMA). Results indicate that the obtained Sc2−xYxW3O12 samples with Y doping of 0≤x≤0.5 are in the form of orthorhombic Sc2W3O12-structure and show negative thermal expansion (NTE) from room temperature to 600 °C; while as-synthesized materials with Y doping of 1.5≤x≤2 take hygroscopic Y2W3O12·nH2O-structure at room temperature and exhibit NTE only after losing water molecules. It is suggested that the obvious difference in crystal structure leads to different thermal expansion behaviors in Sc2−xYxW3O12. Thus it is proposed that thermal expansion properties of Sc2−xYxW3O12 can be adjusted by the employment of Y dopant; the obtained Sc1.5Y0.5W3O12 ceramic shows almost zero thermal expansion and its average linear thermal expansion coefficient is −0.00683×10−6 °C−1 in the 25–250 °C range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号