首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi-walled carbon nanotubes (MWCNTs) can act not only as a support for Fe3O4 nanoparticles (NPs) but also as a coworker with synergistic effect, accordingly improving the heterogeneous Fenton-like efficiency of Fe3O4 NPs. In this study, Fe3O4 NPs were in situ anchored onto MWCNTs by a moderate co-precipitation method and the as-prepared Fe3O4/MWCNTs nanocomposites were employed as the highly efficient Fenton-like catalysts. The analyses of XRD, FTIR, Raman, FESEM, TEM and HRTEM results indicated the formation of Fe3O4 crystals in Fe3O4/MWCNTs nanocomposites prepared at different conditions and the interaction between Fe3O4 NPs and MWCNTs. Over a wide pH range, the surface of modified MWCNTs possessed negative charges. Based on these results, the possible combination mechanism between Fe3O4 NPs and MWCNTs was discussed and proposed. Moreover, the effects of preparation and catalytic conditions on the Fenton-like catalytic efficiency were investigated in order to gain further insight into the heterogeneous Fenton-like reaction catalyzed by Fe3O4/MWCNTs nanocomposites.  相似文献   

2.
Fe3O4/MWCNTs nanocomposites were prepared by chemical oxidation coprecipitation method and developed as highly efficient heterogeneous Fenton-like catalyst. XRD results revealed that Fe3O4 nanoparticles deposited onto MWCNTs surface remained the inverse spinel crystal structure of cubic Fe3O4 phase. The FTIR characteristic peaks of MWCNTs weakened or disappeared due to the anchor of Fe3O4 nanoparticles and Fe–O peak at 570 cm–1 was indicative of the formation of Fe3O4. TEM observation revealed that Fe3O4 nanoparticles were tightly anchored by MWCNTs. The Fenton-like catalytic activity of Fe3O4/MWCNTs nanocomposites for the discoloration of methyl orange (MO) was much higher than that of Fe3O4 nanoparticles. The process optimization of this heterogeneous Fenton-like system was implemented by response surface methodology (RSM). The optimum conditions for MO discoloration were determined to be of 12.3 mmol/L H2O2 concentration, 2.9 g/L catalyst dosage, solution pH 2.7 and 39.3 min reaction time, with the maximum predicted value for MO discoloration ratio of 101.85%. The corresponding experimental value under the identical conditions was obtained as 99.86%, which was very close to the predicted one with the absolute deviation of 1.99%.  相似文献   

3.
In situ anchor of magnetic Fe3O4 nanoparticles (NPs) onto the surface of natural maifanite was realized by chemical oxidation coprecipitation in hot alkaline solution. The Fe3O4/maifanite composites were characterized by XRD, FTIR, SEM, and TEM. These results indicated that polycrystalline Fe3O4 NPs with inverse spinel structure were formed and tightly dispersed on maifanite surface. Based on the measurement of surface Zeta potential of maifanite at different medium pHs, the possible combination mechanism between natural maifanite and Fe3O4 NPs was proposed. Then, the asobtained composites were developed as highly efficient heterogeneous Fenton-like catalyst for the discoloration of an azo dye, Methyl Orange (MO). The comparative tests on MO discoloration in different systems revealed that Fe3O4/maifanite composite exhibited much higher Fenton-like catalytic activity than Fe3O4 NPs and the heterogeneous Fentonlike reaction governed the discoloration of MO. Kinetic results clearly showed that MO discoloration process followed the second-order kinetic model. Fe3O4/maifanite composites exhibited the typical ferromagnetic property detected by VSM and could be easily separated from solution by an external magnetic field.  相似文献   

4.
In this paper, ZnS:Mn2+ quantum dots (QDs) Fe3O4 quantum dots (QDs)/SiO2 nanocomposites were successfully synthesized by reverse microemulsion method. The average diameter of ZnS:Mn2+ QDs, Fe3O4 QDs and ZnS:Mn2+ QDs Fe3O4 QDs/SiO2 nanocomposites was about 5.8, 9 and 29 nm, respectively. As the mass ratio of ZnS:Mn2+ to Fe3O4 QDs increased from 2.5:4 to 7.5:4, the intensity of the yellow–orange emission coming from Mn2+ ions was increased. The superparamagnetic property of ZnS:Mn2+ QDs Fe3O4 QDs/SiO2 nanocomposites was observed at room temperature, and the saturation magnetization was decreased as the amount of ZnS:Mn2+ QDs increased.  相似文献   

5.
A magnetic Cu/CuFe2O4 nanocomposite was synthesized by a facile one-pot solvothermal method and characterized as an excellent Fenton-like catalyst for methylene blue (MB) degradation. The content of zero-valent copper (Cu0) in Cu/CuFe2O4 composite could be simply controlled by changing the dosage of sodium acetate in the synthetic process, and the Fenton-like catalytic performance of Cu/CuFe2O4 composite enhanced with increasing the Cu0 content. In the presence of H2O2 (15 mM), the as-synthesized 3-Cu/CuFe2O4 nanocomposite could remove 99% of MB (50 mg/L) after only 4 min at pH 2.50, greatly higher than that of pure CuFe2O4 and Cu0 under the same condition. The enhancement activity of Cu/CuFe2O4 nanocomposite was due to the synergistic effect between Cu0 and CuFe2O4. The radical capture experiments and coumarin fluorescent probe technique confirmed that MB was degraded mainly by the attack of OH· radicals in Cu/CuFe2O4–H2O2 system.  相似文献   

6.
Bifunctional magnetic-luminescent dansylated Fe3O4@SiO2 (Fe3O4@SiO2-DNS) nanoparticles were fabricated by the nucleophilic substitution of dansyl chloride with primary amines of aminosilane-modified Fe3O4@SiO2 core–shell nanostructures. The morphology and properties of the resultant Fe3O4@SiO2-DNS nanoparticles were investigated by transmission electron microscopy, FT–IR spectra, UV–vis spectra, photoluminescence spectra, and vibrating sample magnetometry. The Fe3O4@SiO2-DNS nanocomposites exhibit superparamagnetic behavior at room temperature, and can emit strong green light under the excitation of UV light. They show very low cytotoxicity against HeLa cells and negligible hemolysis activity. The T 2 relaxivity of Fe3O4@SiO2-DNS in water was determined to be 114.6 Fe mM−1 s−1. Magnetic resonance (MR) imaging analysis coupled with confocal microscopy shows that Fe3O4@SiO2-DNS can be uptaken by the cancer cells effectively. All these positive attributes make Fe3O4@SiO2-DNS a promising candidate for both MR and fluorescent imaging applications.  相似文献   

7.
A facile and efficient approach for the fabrication of Fe3O4@TiO2 nanospheres with a good core–shell structure has been demonstrated. Products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The results showed that Fe3O4@TiO2 nanocomposites exhibited high degree of crystallinity, excellent magnetic properties at room temperature. Furthermore, the as-prepared Fe3O4@TiO2 nanocomposites exhibited good photocatalytic activity toward the degradation of Rhodamine B (RhB) solution. Additionally, the recycling experiment of Fe3O4@TiO2 nanocomposites had been done, demonstrating that Fe3O4@TiO2 nanocomposites have high efficiency and stability.  相似文献   

8.
The synthesis and characterization of Y2−xFexO3 (where x = 0–0.3) compounds has been carried out for their importance in the field of multiferroic materials. The powder X-ray diffraction reveal that the compounds Y1.95Fe0.05O3, Y1.9Fe0.1O3, Y1.85Fe0.15O3 and Y1.8Fe0.2O3 crystallize in tetragonal structure whereas Y1.75Fe0.25O3 and Y1.7Fe0.3O3 compounds crystallize in orthorhombic structure. The change in crystal system with respect to the concentration of Fe may be attributed to the variation in occupancy position of Fe3+ into the Y3+ site of Y2O3 system. Variation in crystal structure, surface morphology and composition was studied by micro-Raman analysis, SEM and EDX analysis. The shift in intense Raman signals from 426 to 385 cm−1 confirms the change in the crystal structure of the prepared compounds. Further it is also identified that the Eg mode of vibration is the dominant in the Fe substituted compounds. The substitution of Fe in the Y2O3 system leads to the increase in the intensity of resonance band, which indicates a large polarisability variation in the Y2−xFexO3 compounds. Diffused reflectance studies show a red shift in energy gap values while increasing the concentration of Fe. The room temperature magnetization and electron paramagnetic resonance studies reveal that the incorporation of Fe in the Y2O3 system leads to magnetic phase change from diamagnetic to ferromagnetic. The electric polarization studies imply that the substitution of lower ionic radii element Fe3+ in the Y3+ site leads to distortion in the lattice and show the way to spontaneous dipole moment and it was found that the Y1.8Fe0.2O3 compound exhibits the possibility of multiferroic behaviour. Therefore this paper explores the possibility of inducing ferromagnetic and ferroelectric behaviour in the Fe substituted yttrium oxide system.  相似文献   

9.
Fe2O3–CeZrO2 is a suitable oxygen storage material for the production of pure hydrogen by a cyclic water gas shift (CWGS) process which is based on the reduction of the material by syngas followed by the re-oxidation of the reduced material with water vapor. For identification of the reduction kinetics H2-temperature programmed reduction experiments were performed. Several kinetic models were tested and the activation energy of reduction was calculated by the Kissinger method, by model-based curve fitting and by the isoconversional analysis method. The reduction of Fe2O3–CeZrO2was found to occur in a four-step process including the reduction of Fe2O3,Fe3O4, and CeZrO2. The overall process can be interpreted as phase-boundary controlled reduction of Fe2O3 to Fe3O4, and two-dimensional nucleation controlled reduction of Fe3O4 to Fe and of CeO2 to Ce2O3. At higher oxygen conversion, the reduction of Fe3O4 and CeO2 are significantly influenced by volume-diffusion in the solid bulk.  相似文献   

10.
A simple and inexpensive approach to synthesizing mesoporous Fe3O4 is developed by using citric acid-assisted solid thermal decomposition of ferric nitrate. The structure and magnetic property of mesoporous Fe3O4 were characterized by XRD, FT–IR, N2 adsorption–desorption isotherms, TEM, and vibrating sample magnetometer. It was shown that the decomposition of citric acid results in the formation of the mesoporous structure and narrow pore-size distribution. The reducing atmosphere which created by the decomposition of the ferric nitrate–citric acid complex caused the partial reduction of Fe(III) to Fe(II) and in turn the formation of Fe3O4. Moreover, the strength of the coordination between carboxyl group and Fe3+ also affected the phase composition of the iron oxides.  相似文献   

11.
The present letter reported the synthesis of MgO-containing magnetic nanocomposites by calcinations of tailored hydrotalcite-like layered double hydroxides (LDHs) of the type [Mg1 – xyFe2+yFe3 +x(OH)2]x +(A)x/2·mH2O (y 0; A = CO32 – or SO42 –) precursors at 900°C for 2 h. The results indicate that calcination of LDHs gives rise to the formation of magnetic nanocomposites of MgO and MgFe2O4 spinel ferrite, where MgO formed could disperse and separate MgFe2O4 particles, and MgO itself was also dispersed or embedded uniformly in the MgFe2O4 spinel matrix. Furthermore, initial studies on the bactericidal properties with staphylococcus aureus show that these as-synthesized nanometer-sized materials have significant bactericidal effect, which increases with the increasing volume fraction of MgO.  相似文献   

12.
The pure Bi2Fe4O9 and Bi2 (1?x) A2xFe4O9 (A?=?Ca, Ba, x?=?0.03) powders are synthesized via a modified solid-state reaction method to study the effects of alkaline-earth metal ions doping on crystal structural, optical and magnetic properties. Both X-ray diffraction and Raman spectroscopy data reveal that all the powders are Mullite-type Bi2Fe4O9 orthorhombic single phase without any impurities. Much greater structural distortion in Bi1.94Ba0.06Fe4O9 than that of Bi1.94Ca0.06Fe4O9 is observed. The chemical compositions of Ba2+ and Ca2+ doped powders have been investigated with energy dispersive X-ray spectroscopy (EDS). X-ray photoelectron spectroscopy results indicate that oxygen vacancies could be found in all doped powders. The ratio of Fe2+ in the total Fe ions is almost unchanged by Ca doping and increases a little with Ba substitution. Compared with that of pure Bi2Fe4O9, the band gap values decrease slightly in Bi1.94Ca0.06Fe4O9 but drop dramatically in Bi1.94Ba0.06Fe4O9. A clear and obvious ferromagnetic behavior is found in Bi1.94Ba0.06Fe4O9 at 10 K. However, Bi1.94Ca0.06Fe4O9 shows a weak ferromagnetism with enhanced magnetization and Bi2Fe4O9 exhibits antiferromagnetism with a linear M–H relationship. The varied bandgap and magnetization resulting from the alkaline-earth metal ionic species are discussed in terms of structural distortion due to the ionic radius size effect.  相似文献   

13.
The SmBi4Fe0.5Co0.5Ti3O15 compounds were prepared by the insertion of the SmFe0.5Co0.5O3 into the Bi4Ti3O12 host and the conventional solid state reaction method, respectively. X-ray diffraction analysis indicates that the conventional solid state reaction method favors the formation of a single phase four-layer Aurivillius phase of SmBi4Fe0.5Co0.5Ti3O15 more easily than that prepared by the insertion method. Magnetic and ferroelectric measurements demonstrate that the samples prepared by both methods exhibit coexistence of strong ferromagnetic and weak ferroelectric behaviors at room temperature. Compared with the Bi5FeTi3O15, the ferromagnetism of the SmBi4Fe0.5Co0.5Ti3O15 was dramatically enhanced by the partial substitution of Co for Fe and Sm for Bi. The SmBi4Fe0.5Co0.5Ti3O15 samples exhibit large magnetic responses (2M r ?~?643 memu/g and coercive fields 2H c ?~?344 Oe) at room temperature.  相似文献   

14.
A simple and quick microwave method to prepare high performance magnetite nanoparticles (Fe3O4 NPs) directly from Fe has been developed. The as-prepared Fe3O4 NPs product was fully characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The results show that the as-prepared Fe3O4 NPs are quite monodisperse with an average core size of 80 × 5 nm. The microwave synthesis technique can be easily modified to prepare Fe3O4/Ag NPs and these NPs possess good magnetic properties. The formation mechanisms of the NPs are also discussed. Our proposed synthesis procedure is quick and simple, and shows potential for large-scale production and applications for catalysis and biomedical/biological uses.  相似文献   

15.
Semiconducting glasses of the Fe2O3-Bi2O3-K2B4O7 system were prepared by the press-quenching method and their dc conductivity in the temperature range 223–393 K was measured. The glass transition temperature values (Tg) of the present glasses were larger than those of tellurite glasses. This indicates a higher thermal stability of the glass in the present system. The density for these glasses was consistent with the ionic size, atomic weight and amount of different elements in the glasses. Mössbauer results revealed that the relative fraction of Fe increases with increasing Fe2O3 content. Electrical conductivity showed a similar composition dependency as the fraction of Fe. The glasses had conductivities ranging from 10 to 10 Scm at temperatures from 223 to 393 K. Electrical conduction of the glasses was confirmed to be due to non-adiabatic small polaron hopping and the conduction was primarily determined by hopping carrier mobility.  相似文献   

16.
Uniform Fe3O4 nanoparticles with diameters of 3-5 nm are successfully decorated onto the external walls of multiwall carbon nanotubes (MWCNTs) by in situ high-temperature decomposition of Fe(acac)3 in polyol solution under the irradiation of microwave. With this method, reaction time of forming Fe3O4-MWCNTs nanocomposites has been significantly shortened to 15 min. The resulting Fe3O4-MWCNTs nanocomposites show superparamagnetic property at room temperature and can be remained as stable aqueous dispersion for 2 months. Longitudinal relaxivity (r1) and transverse relaxivity (r2) of the magnetic MWCNTs are 8.34 Fe mM−1 S−1 and 146 Fe mM−1 S−1 respectively. The much higher r2 value and the obvious change in the gray scale of MR images confer the Fe3O4-MWCNTs nanocomposites as potential candidates for T2-weighted MRI contrast agents.  相似文献   

17.
The kinetics of the UO2 dissolution in the N2O4-H2O system was studied. At 25°C, the process is kinetically controlled, whereas at 55°C the process occurs initially under kinetic control (3 min) and then under diffusion-kinetic control. At 80°C, the process occurs exclusively under diffusion-kinetic control. The apparent activation energy was estimated at ∼39 kJ mol−1.  相似文献   

18.
Acicular magnetite (Fe3O4) powders were synthesized through new glycothermal dehydration by using crystalline α-FeOOH as precursor and glycols as solvent. When ethylene glycol was used as solvent, the phase was in-situ transformed from acicular α-FeOOH to α-Fe2O3 and finally to Fe3O4 at 270 °C for 6 h without morphological change. When water was added as a co-solvent in glycothermal reaction, Fe3O4 powders were synthesized through dissolution–recrystallization process at 230 °C for 3 h. The volume ratio of ethylene glycol to water (E/W) in the reaction has a strong effect on the morphology of the synthesized Fe3O4 particles. The particle shape of Fe3O4 particles changed from needle to sphere when the water content in E/W volume ratio increased from 0.5 to 1 mL in mixed glycothermal condition. When the water were added by more than 10 ml, the particle shape of Fe3O4 changed from sphere to octahedron truncated with the {100} faces and finally distinct octahedron with only {111} faces. Also, it is demonstrated that the size of Fe3O4 particles can be controlled from 1–2 μm to 100–200 nm by varying the reaction conditions such as the volume ratio of water to ethylene glycol and additive in glycothermal reaction.  相似文献   

19.
Polycrystalline samples of Ba4Ln2Fe2Ta8O30 (Ln = La and Nd) were prepared by a high temperature solid-state reaction technique. The formation, structure, dielectric and ferroelectric properties of the compounds were studied. Both compounds are found to be paraelectrics with filled tetragonal tungsten bronze (TB) structure at room temperature. Dielectric measurements revealed that the present ceramics have exceptional temperature stability, a relatively small temperature coefficient of dielectric constant (τ ε ) of −25 and −58 ppm/°C, with a high dielectric constant of 118 and 96 together with a low dielectric loss of 1.2 × 10−3 and 2.8 × 10−3 (at 1 MHz) for Ba4La2Fe2Ta8O30 and Ba4Nd2Fe2Ta8O30, respectively. The measured dielectric properties indicate that both materials are possible candidates for the fabrication of discrete multilayer capacitors in microelectronic technology.  相似文献   

20.
With Fe(NO3)3·9H2O and Bi(NO3)3·5H2O as raw materials, different sillenite-type compounds and elemental bismuth were prepared by a facile one-pot solvothermal method using H2O, C2H5OH, (CH2OH)2 and C3H8O3 as solvents, respectively. The structure, morphology, elemental compositions and properties of samples were examined by XRD, SEM, TEM, ICP, XPS, N2 adsorption and desorption, UV-vis DRS and PL. The photocatalytic activities of different samples were evaluated by the photodegradation of RhB under visible-light irradiation (λ > 400 nm), and results show that Bi36Fe2O57 prepared using C2H5OH as the solvent owns the optimum performance. In order to explore the reaction mechanism, an additional experiment was designed to investigate the main active species during the photodegradation process via dissolving different trapping agents in the reaction solution before light irradiation. The results show that superoxide radical anions play a major role in this system since the RhB degradation was significantly suppressed after the addition of benzoquinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号