首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, graphene flake (GF) was successfully embedded into a nanosheet-like molybdenum sulfide (MoS2) matrix via an in situ hydrothermal route, and the resultant hybrid was employed as a counter electrode (CE) for Pt-free dye-sensitized solar cells (DSCs). It is confirmed from scanning electron microscopy, X-ray diffraction, Raman spectroscopy and transmission electron microscopy that GFs are successfully incorporated in the nanosheet-like MoS2 matrix and thus result in its surface evolution. The extensive electrochemical analyses reveal that the remarkably enhanced electrocatalytic activity can be demonstrated when GFs are incorporated in the MoS2 matrix. After the optimization, the nanosheet-like MoS2/GF hybrid with 1.5 wt.% GF shows the best electrocatalytic activity. The DSC assembled with the novel nanosheet-like MoS2/GF hybrid CE exhibits a high photovoltaic conversion efficiency of 6.07% under standard illumination, up to 95% of the level obtained using conventional Pt CE (6.41%).  相似文献   

2.
MoS2 has attracted a lot of interest in the field of lithium-ion storage as an anode material owing to its high capacity and two-dimensional (2D)-layer structure. However, its electrochemical properties, such as rate capability and cycling stability, are usually limited by its low conductivity, volume variation, and polysulfide dissolution during lithiation/delithiation cycling. Here, a designed two-layer carbon-coated MoS2/carbon nanofiber (MoS2/C/C fiber) hybrid electrode with a double-layer carbon coating was achieved by a facile hydrothermal and subsequent electrospinning method. The double carbon layer (inner amorphous carbon and outer carbon fiber) shells could efficiently increase the electron conductivity, prevent the aggregation of MoS2 flakes, and limit the volume change and polysulfide loss during long-term cycling. The as-prepared MoS2/C/C fiber electrode exhibited a high capacity of up to 1,275 mAh/g at a current density of 0.2 A/g, 85.0% first cycle Coulombic efficiency, and significantly increased rate capability and cycling stability. These results demonstrate the potential applications of MoS2/C/C fiber hybrid material for energy storage and may open up a new avenue for improving electrode energy storage performance by fabricating hybrid nanofiber electrode materials with double-layer carbon coatings.
  相似文献   

3.
Developing two dimensional (2D) materials based ink is an advanced method for fabricating printable and flexible electronic devices. 2D few-layered molybdenum disulfide (MoS2) reveals a great potential for capacitive energy storage because of its layered structure (for ion intercalation), high surface area (provide active sites) and multi-valence state of Mo (introduce pseudocapacitive reactions). These unique properties could intensively improve the potential of MoS2 for supercapacitors. However, MoS2 is a semiconductor with low conductivity, which limits its performance in electrochemistry. In the meantime, MoS2 based ink for flexible energy storage application has been barely investigated. In this work, we design a MoS2 and carbon nanotube (MoS2/CNT) hybrid ink that uses exfoliated MoS2 nanosheet and CNT to fabricate a paper-based supercapacitor. A strong synergistic effect between MoS2 and CNT in capacitive performance was observed due to the good conductivity of CNT and high capacitance of MoS2. Paper-based solid-state device is also fabricated which reveals good flexibility and high capacitive performance. This hybrid ink represents a new road for flexible paper-based devices.  相似文献   

4.
The search for high capacity, low-cost electrode materials for lithium-ion batteries is a significant challenge in energy research. Among the numerous potential candidates, layered compounds such as MoS2 (Molybdenum Disulfide) have attracted increasing attention. A facile hydrothermal reduction process using hexadecyltrimethy ammonium bromide (CTAB) as surfactant was developed for the synthesis of lithium-ion battery anode material MoS2 nanoflowers. The impact of CTAB on morphology and electrochemical performance of MoS2 has been investigated. With the increase of CTAB content, MoS2 ultrathin nanosheets with high specific surface area and more active sites have been successfully synthesized. Electrochemical measurements demonstrated that MoS2 nanoflowers synthesized with 1% content of CTAB have better electrochemical performance than others as anode materials for Li-ion batteries, which yield a high discharge capacity of 1245 mAh g?1 at a current density of 50 mA g?1 and a stable capacity retention of 740 mAh g?1 until 100 electrochemical cycles.  相似文献   

5.
High-rate anode materials for lithium-ion batteries are desirable for applications that require high power density. We demonstrate the advantageous rate capability of few-layered graphene nanosheets, with widths of 100–200 nm, over micro-scale graphene nanosheets. Possible reasons for the better performance of the former include their smaller size and better conductivity than the latter. Combination of SnO2 nanoparticles with graphene was used to further improve the gravimetric capacities of the electrode at high charge-discharge rates. Furthermore, the volumetric capacity of the composites was substantially enhanced compared to pristine graphene due to the higher density of the composites.  相似文献   

6.
Potassium has its unique advantages over lithium or sodium as a charge carrier in rechargeable batteries. However, progresses in K‐ion battery (KIB) chemistry have so far been hindered by lacking suitable electrode materials to host the relatively large K+ ions compared to its Li+ and Na+ counterparts. Herein, molybdenum disulfide (MoS2) “roses” grown on reduced graphene oxide sheets (MoS2@rGO) are synthesized via a two‐step solvothermal route. The as‐synthesized MoS2@rGO composite, with expanded interlayer spacing of MoS2, chemically bonded between MoS2 and rGO, and a unique nano‐architecture, displays the one of the best electrochemical performances to date as an anode material for nonaqueous KIBs. More importantly, a combined K+ storage mechanism of intercalation and conversion reaction is also revealed. The findings presented indicate the enormous potential of layered metal dichalcogenides as advanced electrode materials for high‐performance KIBs and also provide new insights and understanding of K+ storage mechanism.  相似文献   

7.
In pursuing excellent supercapacitor electrodes, we designed a series of MoS2/CoS2 composites consisting of flower-liked MoS2 and octahedron-shaped CoS2 through a facile one-step hydrothermal method and investigated the electrochemical performance of the samples with various hydrothermal time. Due to the coupling of two metal species and a big amount of well-developed CoS2 and MoS2, the results indicated that the MoS2/CoS2 composites electrodes exhibited the best electrochemical performance with a large specific capacitance of 490 F/g at 2 mV/s or 400 F/g at 10 A/g among all samples as the hydrothermal time reached 48 h (MCS48). Furthermore, the retention of MCS48 is 93.1% after 10000 cycles at 10 A/g, which manifests the excellent cycling stability. The outstanding electrochemical performance of MCS48 indicates that it could be a very promising and novel energy storage material for supercapacitors in the future.  相似文献   

8.
In this study, graphene was synthesized from graphite. Graphite was oxidized via modified Hummer’s method and sonicated to form graphene oxide (GO). Infrared spectroscopy revealed the successful oxidation of graphite by the emergence of oxygen functionalities. The spectrum of GO showed peaks at 3270, 1629, 1227 and 1096 cm?1, indicating O–H, C=O, C–OH and C–O–C functional groups, respectively. Graphene hydrogels were prepared by the addition of L-ascorbic acid to GO suspensions and subsequent heating at 90°C. Composite hydrogels of graphene and titanium (IV) oxide (TiO2) were synthesized with various TiO2 to GO mass ratios. Composites were applied to photocatalytic hydrogen evolution reaction (HER) and the hydrogen gas produced was analysed by gas chromatography with thermal conductivity detector. Highest HER yield was 66.00% H2.  相似文献   

9.
2D transition metal dichalcogenides (TMDCs) have emerged as promising candidates for post‐silicon nanoelectronics owing to their unique and outstanding semiconducting properties. However, contact engineering for these materials to create high‐performance devices while adapting for large‐area fabrication is still in its nascent stages. In this study, graphene/Ag contacts are introduced into MoS2 devices, for which a graphene film synthesized by chemical vapor deposition (CVD) is inserted between a CVD‐grown MoS2 film and a Ag electrode as an interfacial layer. The MoS2 field‐effect transistors with graphene/Ag contacts show improved electrical and photoelectrical properties, achieving a field‐effect mobility of 35 cm2 V?1 s?1, an on/off current ratio of 4 × 108, and a photoresponsivity of 2160 A W?1, compared to those of devices with conventional Ti/Au contacts. These improvements are attributed to the low work function of Ag and the tunability of graphene Fermi level; the n‐doping of Ag in graphene decreases its Fermi level, thereby reducing the Schottky barrier height and contact resistance between the MoS2 and electrodes. This demonstration of contact interface engineering with CVD‐grown MoS2 and graphene is a key step toward the practical application of atomically thin TMDC‐based devices with low‐resistance contacts for high‐performance large‐area electronics and optoelectronics.  相似文献   

10.
Conducting polymers generally show high specific capacitance but suffer from poor rate capability and rapid capacitance decay, which greatly limits their practical applications in supercapacitor electrodes. To this end, many studies have focused on improving the overall capacitive performance by synthesizing nanostructured conducting polymers or by depositing a range of coatings to increase the active surface area exposed to the electrolyte and enhance the charge transport efficiency and structural stability. Despite this, simultaneously achieving high specific capacitance, good rate performance, and long cycle life remains a considerable challenge. Among the various two-dimensional (2D) layered materials, octahedral (1T) phase molybdenum disulfide (MoS2) nanosheets have high electrical conductivity, large specific surface areas, and unique surface chemical characteristics, making them an interesting substrate for the controlled growth of nanostructured conducting polymers. This paper reports the rational synthesis of carbon shell-coated polyaniline (PANI) grown on 1T MoS2 monolayers (MoS2/PANI@C). The composite electrode comprised of MoS2/PANI@C with a ~3 nm carbon shell exhibited a remarkable specific capacitance of up to 678 F·g–1 (1 mV·s–1), superior capacity retention of 80% after 10,000 cycles and good rate performance (81% at 10 mV·s–1) due to the multiple synergic effects between the PANI nanostructure and 1T MoS2 substrates as well as protection by the uniform thin carbon shell. These properties are comparable to the best overall capacitive performance achieved for conducting polymers-based supercapacitor electrodes reported thus far.
  相似文献   

11.
Recent studies have indicated that two-dimensional (2D) MoS2 exhibits low in-plane and inter-plane thermal conductivities. This poses a significant challenge to heat management in MoS2-based electronic devices. To address this challenge, we have designed MoS2-graphene interfaces that fully utilize graphene, a 2D material that exhibits very high thermal conductivity. First, we performed ab initio atomistic simulations to understand bonding and structural stability at the interfaces. The interfaces that we designed, which were connected via strong covalent bonds between Mo and C atoms, were energetically stable. We then performed molecular dynamics simulations to investigate interfacial thermal conductance in these materials. Surprisingly, the interfacial thermal conductance was high and comparable to those of covalently bonded graphene-metal interfaces. Importantly, each interfacial Mo–C bond served as an independent thermal channel, enabling modulation of the interfacial thermal conductance by controlling the Mo vacancy concentration at the interface. The present work provides a viable heat management strategy for MoS2-based electronic devices.
  相似文献   

12.
Layered material MoS2 is widely applied as a promising anode for lithium‐ion batteries (LIBs). Herein, a scalable and facile dopamine‐assisted hydrothermal technique for the preparation of strongly coupled MoS2 nanosheets and nitrogen‐doped graphene (MoS2/N‐G) composite is developed. In this composite, the interconnected MoS2 nanosheets are well wrapped onto the surface of graphene, forming a unique veil‐like architecture. Experimental results indicate that dopamine plays multiple roles in the synthesis: a binding agent to anchor and uniformly disperse MoS2 nanosheets, a morphology promoter, and the precursor for in situ nitrogen doping during the self‐polymerization process. Density functional theory calculations further reveal that a strong interaction exists at the interface of MoS2 nanosheets and nitrogen‐doped graphene, which facilitates the charge transfer in the hybrid system. When used as the anode for LIBs, the resulting MoS2/N‐G composite electrode exhibits much higher and more stable Li‐ion storage capacity (e.g., 1102 mAh g?1 at 100 mA g?1) than that of MoS2/G electrode without employing the dopamine linker. Significantly, it is also identified that the thin MoS2 nanosheets display outstanding high‐rate capability due to surface‐dominated pseudocapacitance contribution.  相似文献   

13.
《Materials Research Bulletin》2013,48(11):4538-4543
The two step processes of hot filament chemical vapor deposition (HFCVD) and DC sputtering were used to grow graphene like carbon (GLC)–nickel (Ni) nanocomposite thin film on fluorine-doped tin oxide (FTO) glass and applied as counter electrode (CE) for dye sensitized solar cells (DSSCs). The morphological and absorption properties revealed uniform GLC–Ni thin film with reasonable transmittance. The GLC–Ni thin film showed enhanced electrical conductivity as compared to FTO. The good electrocatalytic activity towards iodide ions in redox electrolyte was showed by the prepared GLC–Ni/FTO thin film electrode. The fabricated DSSC with GLC–Ni/FTO counter electrode (CE) presented relatively moderate solar-to-electrical conversion efficiency of ∼3.1% with high short-circuit current density (JSC) of ∼10.03 mA/cm2, open circuit voltage (VOC) of ∼0.663 V with fill factor (FF) of ∼0.45, which might attribute to enhanced electrical conductivity and the electrocatalytic activity of GLC–Ni/FTO CE.  相似文献   

14.
This article presents the effect of hematite phase iron oxide (α-Fe2O3) on the electrocatalytic activity of graphene oxide (GO) for electrochemical detection of hydroquinone in aqueous solution. The different weight percentage (wt%) (1, 2 and 3%) of α-Fe2O3 added GO nanocomposites were synthesized by wet-impregnation method. The cyclic voltammetry studies using 2% α-Fe2O3-GO modified glassy carbon electrodes was found to exhibit an excellent electrocatalytic activity than α-Fe2O3 and GO electrodes that may be due to the synergistic effect of α-Fe2O3nanoparicles and GO sheet. In addition, the modified electrode exhibited a good reproducibility as well as long-term stability. Hence, the 2% α-Fe2O3-GO can be a promising catalytic material for electrochemical sensor applications.  相似文献   

15.
A cationic surfactant‐assisted hydrothermal route is developed for the facile synthesis of graphene‐like MoS2/graphene (GL‐MoS2/G) composites based on the hydrothermal reduction of Na2MoO4 and graphene oxide sheets with L‐cysteine in the presence of cetyltrimethylammonium bromide (CTAB), following by annealling in N2 atmosphere. The GL‐MoS2/G composites are characterized by X‐ray diffraction, electron microscopy, high‐resolution transmission electron microscopy, and Raman spectroscopy. The effects of CTAB concentration on the microstructures and electrochemical performances of the composites for reversible Li+ storage are investigated. It is found that the layer number of MoS2 sheets decreases with increasing CTAB concentration. The GL‐MoS2 sheets in the composites are few‐layer in the case of 0.01~0.03 mol L?1 CTAB of hydrothermal solution and single‐layer in the case of 0.05 mol L?1 CTAB. The GL‐MoS2/G composites prepared with 0.01–0.02 mol·L?1 of CTAB solution exhibit a higher reversible capacity of 940–1020 mAh g?1, a greater cycle stability, and a higher rate capability than other samples. The exceptional electrochemical performance of GL‐MoS2/G composites for reversible Li+ storage could be attributed to an effective integration of GL‐MoS2 sheets and graphene that maximizes the synergistic interaction between them.  相似文献   

16.
We have developed processes for the fabrication of SiO2–TiO2 composites containing crown ethers (CEs) with composite: CE weight ratios from 1: 0.06 to 1: 1. As oxide sources, we used titania and silica sols. The composites were characterized by differential thermal analysis, X-ray diffraction, and adsorption gravimetry. The results demonstrate that most of the water and the solvent are bound into a complex with the CE, which decomposes at temperatures from 170 to 230°C. The temperature range of CE removal depends on the SiO2: TiO2 and oxide: CE ratios in the composite. Our results demonstrate effectiveness of strontium cation imprint formation in an adsorbent in the sol–gel processing step, which ensures an increase in the amount of strontium cation adsorption by 20%. We have identified conditions for quantitative lanthanum, strontium, and barium adsorption on the synthesized composites.  相似文献   

17.
We report a double-sacrificial-template method for the fabrication of a Cu2O and a reduced graphene oxide (rGO) porous nanocomposite (Cu2O/rGO), which has great potential in non-enzymatic glucose detection. Firstly, an aqueous graphene oxide (GO) solution was dispersed in a polystyrene (PS)/cyclohexane (CH) solution to prepare a water-in-oil emulsion at 50 °C. Then, the emulsion was cast onto a glass substrate to evaporate solvents and cooled down to room temperature. During that time, the self-assembly of the GO sheets and the PS chains takes place at the interface. The cooling of the emulsion below the θ temperature of the system PS/CH (34.5 °C) facilitates the precipitation of the PS chains at the interface to form microcapsules. A sponge-like PS/GO composite film was thus obtained after complete evaporation of solvents, where the water droplets in the emulsion served as the first sacrificial template. The PS/GO composite was loaded with copper compounds and was then carbonized to remove the second template of the polymer. In this manner, a free-standing porous nanocomposite of Cu2O/rGO was fabricated, and its structure was carefully characterized. The composite was applied as the working electrode in order to take advantages of its porous microstructure, the conductivity of rGO, and the electrochemical performance of crystalline nano-Cu2O. The electrochemical responses of the composite to glucose were evaluated at glucose concentration ranging from 20 to 1000 μM. The results evidence that the porous nanocomposite of Cu2O/rGO exhibits fast and linear amperometric responses to glucose with excellent sensitivities. Moreover, the stability of the Cu2O/rGO composite in the electrolyte solution and its selective response to glucose have been demonstrated to indicate its practical potential.  相似文献   

18.
Molybdenum disulfide (MoS2) is a promising electrode material for electrochemical energy storage owing to its high theoretical specific capacity and fascinating 2D layered structure. However, its sluggish kinetics for ionic diffusion and charge transfer limits its practical applications. Here, a promising strategy is reported for enhancing the Na+‐ion charge storage kinetics of MoS2 for supercapacitors. In this strategy, electrical conductivity is enhanced and the diffusion barrier of Na+ ion is lowered by a facile phosphorus‐doping treatment. Density functional theory results reveal that the lowest energy barrier of dilute Na‐vacancy diffusion on P‐doped MoS2 (0.11 eV) is considerably lower than that on pure MoS2 (0.19 eV), thereby signifying a prominent rate performance at high Na intercalation stages upon P‐doping. Moreover, the Na‐vacancy diffusion coefficient of the P‐doped MoS2 at room temperatures can be enhanced substantially by approximately two orders of magnitude (10?6–10?4 cm2 s?1) compared with pure MoS2. Finally, the quasi‐solid‐state asymmetrical supercapacitor assembled with P‐doped MoS2 and MnO2, as the positive and negative electrode materials, respectively, exhibits an ultrahigh energy density of 67.4 W h kg?1 at 850 W kg?1 and excellent cycling stability with 93.4% capacitance retention after 5000 cycles at 8 A g?1.  相似文献   

19.
2 mol% Mn doped Ba(Zr0.2Ti0.8)O3 (Mn-BZT) thin films were prepared by pulsed laser deposition (PLD) on single crystal oxide substrates LaAlO3(001) and MgO(001), with conductive oxide bottom electrodes LaNiO3 and SrRuO3, respectively. Both the Mn-BZT films and the bottom electrode films could be c-axial oriented with a cube-on-cube arrangement on the corresponding substrates. The dielectric properties measured with parallel plate capacitor configurations of Au/Mn-BZT/LNO and Au/Mn-BZT/SRO revealed that the Mn-BZT film on LNO bottom electrode exhibited comparatively higher dielectric constant, larger dielectric tunability and lower dielectric loss than that on SRO. It could be mainly attributed to the better epitaxial growth characteristics and mismatch stress of Mn-BZT thin film on LNO, as well as less misfit dislocation and the better morphology of LNO bottom electrode.  相似文献   

20.
Micrometer‐sized electrochemical capacitors have recently attracted attention due to their possible applications in micro‐electronic devices. Here, a new approach to large‐scale fabrication of high‐capacitance, two‐dimensional MoS2 film‐based micro‐supercapacitors is demonstrated via simple and low‐cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro‐supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.5 mm length, 820 μm wide for each electrode, 200 μm spacing between two electrodes and the thickness of electrode is ~0.45 μm. The optimum MoS2‐based micro‐supercapacitor exhibits excellent electrochemical performance for energy storage with aqueous electrolytes, with a high area capacitance of 8 mF cm?2 (volumetric capacitance of 178 F cm?3) and excellent cyclic performance, superior to reported graphene‐based micro‐supercapacitors. This strategy could provide a good opportunity to develop various micro‐/nanosized energy storage devices to satisfy the requirements of portable, flexible, and transparent micro‐electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号