共查询到15条相似文献,搜索用时 46 毫秒
1.
基于关联规则挖掘的个性化智能推荐服务 总被引:13,自引:1,他引:13
为了解决WWW上的“信息过载”和“资源迷向”问题,该文提出了基于关联规则挖掘的个性化智能推荐服务。个性化智能推荐服务系统包括两个主要部分:离线部分和在线部分,在离线方式下,执行对WEB服务器的访问log文件的分析挖掘,获取用户事务模式,再采用支持度过滤方法获取频繁的用户事务模式,然后,生成聚集树。在在线方式下,针对当前滑窗的用户访问操作路径,采用基于聚集树的关联规则挖掘,获取匹配当前滑窗的用户访问操作路径的关联规则集,生成推荐的候选集。实现在线个性化智能推荐服务。试验结果显示,该文提出的方法是有效的和可行的。 相似文献
2.
基于改进关联规则挖掘算法的图书推荐服务 总被引:3,自引:0,他引:3
针对关联规则Apriori挖掘算法存在的缺点,本文提出了一种新的改进算法,并将该算法应用于图书推荐服务模型,以满足读者的个性化信息服务需求。 相似文献
3.
一种基于后项不定长关联规则的Web个性化推荐方法 总被引:2,自引:0,他引:2
Web usage mining plays an important part in supporting personalized recommendation on Web and association rule uncovers the interesting relations among items hidden in data. The paper gives an idea of association rule merging-deleting based on the analysis of association rule characteristics and implements it in the rule preparation before the Web personalized recommendation. Furthermore, based on the comparisons in precision, coverage and F1 of recommendation system and the rule numbers used in three kinds of association rules, a Web personalized recommendation method based on uncertain consequent is put forward. After integrative analysis of several recommendation methods, the method given in the paper can be thought as a good selection. At last several pageweighted techniques are introduced in the paper. 相似文献
4.
支持个性化推荐的Web面关联规则挖掘算法 总被引:3,自引:0,他引:3
分析了应用于个性化推荐的Web页面关联规则的特点,提出了“壹支持数下k关联规则”的思想,根据这一思想设计、实现了一种应用于个性化推荐的Web页面关联规则挖掘算法——PARM(Pageview Association Rule Mining)及频繁项集的Freq-Sdt-Tree存储结构,在产生频繁项的同时挖掘关联规则,因而能提高效率。实验证明在个性化推荐系统中PARM算法的效率明显高于FP-Growth算法。 相似文献
5.
6.
个性化智能信息提取中的用户兴趣发现 总被引:12,自引:0,他引:12
1 引言 1990年,WWW(World Wide Web)出现,在随后的几年中它获得了空前的发展,Internet上的信息量以指数形式飞速增长,现在,Internet已成为一个浩瀚的海量信息源。但由于Internet是一个具有开放性、动态性和异构性的全球分布式网络,资源分布很分散,且 相似文献
7.
段万新 《计算机光盘软件与应用》2010,(4):24-25
关联规则是数据挖掘中的一个重要问题,本文在研究关联挖掘的基础上,通过对过去客户的交易记录进行分析,建立关联规则,为客户提供商品推荐,从而也为电子商务网站店主提供正确的盈利导向。 相似文献
8.
9.
10.
11.
为了提高图书的借阅率,满足读者的个性化需求,提出使用关联规则挖掘技术。当读者借阅某本图书时,自动从海量图书中找到与该图书相关的书籍推荐给读者。实践证明该方法能减少读者寻找相关图书的时间,达到个性化推荐的目的。 相似文献
12.
为了准确对用户的消费提供个性化建议,智能推荐系统应运而生.对智能推荐系统体系结构及实现方法进行了有益的探索,将模糊聚类、模糊关联规则挖掘与模糊推理相结合,设计并实现了一个原型智能推荐系统.该系统在经过实际数据运行后,经过模糊聚类、模糊关联规则挖掘和规则筛选,并经过模糊推理,系统可以给出一些符合实际背景的结论. 相似文献
13.
14.
个性化推荐系统是根据用户的爱好,给用户推荐符合用户兴趣的对象的一种高级商务智能平台.论文重点探讨基于用户的协同过滤算法,介绍其基本思想和工作流程,并通过高级语言C++来实现三种相似度计算方法,通过实验比较得出了最佳的计算方法,并设计实现了一个电子商务个性化推荐系统原型,对其他同类网站应用个性化推荐系统具有很好的参考价值. 相似文献
15.
针对学生网络学习环境设计了一种新颖的个性化教学推荐系统。该系统通过测试学生的学习风格和挖掘Web浏览日志,构造了不同学生学习风格和Web使用习惯的模型。首先利用Item-Based Top-N推荐算法对数据稀疏的学习风格测量数据进行处理,实现对学生学习风格的诊断;然后,采用AprioriAll算法挖掘Web浏览日志中序列频繁集,分析出学生Web使用的常见习惯和兴趣;最后,依据不同的学习风格和Web使用习惯实现学习内容的个性化推荐。模拟实验表明,该推荐系统的设计是可行并有效的,能够很好地符合用户的真实需求。 相似文献