首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the hair cells on each sensory macula from the inner ear of the paddlefish (Polyodon spathula) was studied using scanning and transmission electron microscopy, revealing the nucleated cell bodies and peripheral nerve fibres of the saccule utricle and lagena. Examination of the structures within the cell body revealed comparable features with those found in the inner ear hair cells from bony fish species, although in P. spathula the afferent cell body is almost twice the size. This is the first time that the inner ear hair cells from an Acipenseriform fish have been studied using transmission microscopy, thus providing benchmark anatomical information in relation to the cellular morphology of the afferent receptors from a ‘healthy’P. spathula ear. Structural information is of assistance in the study of aquatic animal hearing for environmental monitoring purposes, as morphological data can be used to confirm if evidence of raised hearing thresholds from animals exposed to intense anthropogenic noise or other destructive agents (determined using electrophysiological or behavioural techniques) are a direct result of damage to the ultrastructure of the inner ear.  相似文献   

2.
Three-dimensional (3D) reconstruction of anatomical structures can give additional insight into the morphology and function of these structures. We compare 3D reconstructions of the guinea pig inner ear, using light microscopy and orthogonal plane fluorescence optical sectioning microscopy. Applications of 3D reconstruction of the inner ear are further explored. For each method two bullas were prepared for 3D reconstruction. Both methods are explained. In general, the 3D reconstructions using orthogonal plane fluorescence optical sectioning microscopy are superior to light microscopy. The exact spiral shape of the cochlea could be reconstructed using orthogonal plane fluorescence optical sectioning microscopy and the length of the basilar membrane measured. When a resolution of 20 μm is sufficient, orthogonal plane fluorescence optical sectioning microscopy is a superior technique for 3D reconstruction of inner ear structures in animals.  相似文献   

3.
The organization of microtubules in hair cells of the guinea-pig cochlea has been investigated using transmission electron microscopy and correlated with the location of tubulin-associated immunofluorescence in surface preparations of the organ of Corti. Results from both techniques reveal consistent distributions of microtubules in inner and outer hair cells. In the inner hair cells, microtubules are most concentrated in the apex. Reconstruction from serial sections shows three main groups: firstly, in channels through the cuticular plate and in a discontinuous belt around its upper perimeter; secondly, forming a ring inside a rim extending down from the lower perimeter of the plate; and thirdly, in a meshwork underlying the main body of the plate. In the cell body, microtubules line the inner face of the subsurface cistern and extend longitudinally through a tubulo-vesicular track between the apex and base. In outer hair cells, the pattern of microtubules associated with the cuticular plate is similar, although there are fewer present than in inner hair cells. In outer hair cells from the apex of the cochlea, microtubules occur around an infracuticular protrusion of cuticular plate material. In the cell body, many more microtubules occur in the region below the nucleus compared with inner hair cells. The possible functions of microtubules in hair cells are discussed by comparison with those found in other systems. These include morphogenesis and maintenance of cell shape; intracellular transport, e.g., of neurotransmitter vesicles; providing a possible substrate for motility; mechanical support of structures associated with sensory transduction.  相似文献   

4.
Innervations of inner and outer hair cells of the organ of Corti of the human cochlea were studied by serial section electron microscopy. At the base of inner hair cells, presumed afferent fibers were of varying size and demonstrated synaptic specialization consisting of a presynaptic body, vesicles, and asymmetrical synaptic membrane specialization. Two types of neurons, vesiculated presumably efferent and nonvesiculated presumably afferent, synapsed at the base of outer hair cells. The synaptic specialization of afferent fibers included presynaptic body, vesicles, and asymmetrical membrane thickening, whereas efferent synapses demonstrated presynaptic vesicles and a subsynaptic cisterna. Some presumably afferent nerve terminals formed a reciprocal synapse with outer hair cells in both the human and the chimpanzee. Such a synaptic relationship demonstrated morphologic specialization consistent with both hair cell-to-neuron and neuron-to-hair cell transmission between the same outer hair cell and nerve terminal. The innervation density of inner and outer hair cells and the comparative anatomy of the afferent and efferent innervation are discussed.  相似文献   

5.
The cochlea is well suited for studies of the uptake properties of auditory neurons and nonneuronal supporting cells. Probe concentrations of radioisotopically labeled amino acids, including putative neurotransmitters and their precursors, breakdown products, and blockers, can be introduced via the natural, fluid-filled channels of the inner ear. Uptake patterns can be mapped at cellular and intracellular levels using light and electron microscopic autoradiographic methods. The procedures for introduction of label, fixation, plastic embedment, and light and electron microscopic autoradiography are described with special reference to the cochlea. Labeling patterns observed with over 20 amino acids are summarized for hair cells, spiral ganglion neurons, efferents, and nonneural elements of the stria vascularis, limbus, and modiolus. Limitations on the interpretation of results and their implications for the general usefulness of the methods are discussed.  相似文献   

6.
The soft X‐ray microscope at the Lawrence Berkeley National Laboratory was developed for visualization of biological tissue. Soft X‐ray microscopy provides high‐resolution visualization of hydrated, non‐embedded and non‐sectioned cells and is thus potentially an alternative to transmission electron microscopy. Here we show for the first time soft X‐ray micrographs of structures isolated from the guinea‐pig inner ear. Sensory outer hair cells and supporting pillar cells are readily visualized. In the hair cells, individual stereocilia can easily be identified within the apical hair bundle. The underlying cuticular plate is, however, too densely composed or too thick to be clearly visualized, and thus appears very dark. The cytoplasmic structures protruding from the cuticular plates as well as the fibrillar material surrounding and projecting from the cell nuclei can be seen. In the pillar cells the images reveal individual microtubule bundles. Soft X‐ray images of the acellular tectorial membrane and thin two‐layered Reissner's membrane display a level of resolution comparable to low‐power electron microscopy.  相似文献   

7.
The afferent innervation pattern of inner hair cells in the apex of the guinea pig cochlea was studied using serial reconstruction of semithick (0.25–μm) sections and high-voltage electron microscopy (HVEM). This thickness produced a good compromise between the ability to resolve details of the synaptic contacts between the hair cells and sensory neurons and the number of sections required to reconstruct the nerve terminals within the receptor organ. The use of a goniometer allowed the sections to be tilted to angles optimum for viewing either the synaptic membrane specializations or the presynaptic bodies. Reasonably good images of 0.25-μm sections could be obtained using a conventional 120-keV microscope, but the images produced by the HVEM were clearly superior. The sensory nerve terminals and hair cells were reconstructed using a microcomputer-based computer-aided-design system. Nerve terminals with complex shapes could be successfully rendered as surface models viewed as stereo pairs. The advantages and limitations of the techniques used are discussed.  相似文献   

8.
Ca2+ cations were precipitated with potassium antimonate in the cochlea of the guinea pig, and the formed precipitates were localized by electron microscopy using either elastically or inelastically scattered electrons. The elemental composition of the precipitates was determined by electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS). It was found that calcium, antimony and oxygen were the dominating elements in the precipitates formed in different cell types in the inner ear.  相似文献   

9.
We have compared the biochemical expression of cholinergic enzymes with the morphological differentiation of efferent nerve fibers and endings in the cochlea of the postnatally developing mouse. Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) are present in the newborn cochlea at specific activities 63% and 25%, respectively, of their mature levels. The relative increases in ChAT, in AChE, and in its molecular forms over the newborn values start about day 4 and reach maturity by about day 10. The biochemical results correlate well with the massive presence of nerve fibers stained immunocytochemically for ChAT and AChE or enzymatically for AChE in the inner and outer hair cell regions. Ultrastructural studies, however, indicate the presence of only few vesiculated fibers and endings in the inner and outer hair cell regions. The appearance of large, cytologically mature endings occurs only toward the end of the third postnatal week. The discrepancy may be resolved in the electron microscope using the enzymatic staining for AChE. Labeling is seen on many nonvesiculated fibers and endings in the hair cell regions, suggesting that the majority of the efferent fibers in the perinatal organ may be biochemically differentiated but morphologically immature. The results may imply that the efferents to inner and outer hair cells develop earlier than indicated by previous ultrastructural studies. Moreover, the pattern of development suggests that in the cochlea, as in other tissues, the biochemical differentiation of the efferent innervation may precede the morphological maturation.  相似文献   

10.
In mammals, hair cell loss is irreversible and leads to hearing loss. To develop and test the functioning of different strategies aiming at hair cell regeneration, animal models of sensorineural hearing loss are essential. Although cochleae of these animals should lack hair cells, supporting cells should be preserved forming an environment for the regenerated hair cells. In this study, we investigated how ototoxic treatment with kanamycin and furosemide changes the structure of cochlear sensory epithelium in mice. The study also compared different tissue preparation protocols for scanning electron microscopy (SEM). Cochleae were collected from deafened and nondeafened mice and further processed for plastic mid modiolar sections and SEM. For comparing SEM protocols, cochleae from nondeafened mice were processed using three protocols: osmium–thiocarbohydrazide–osmium (OTO), tannic acid–arginine–osmium, and the conventional method with gold‐coating. The OTO method demonstrated optimal cochlear tissue preservation. Histological investigation of cochleae of deafened mice revealed that the supporting cells enlarged and ultimately replaced the lost hair cells forming types 1 and 2 phalangeal scars in a base towards apex gradient. The type 3 epithelial scar, flattened epithelium, has not been seen in analysed cochleae. The study concluded that mice deafened with kanamycin and furosemide formed scars containing supporting cells, which renders this mouse model suitable for testing various hair cell regeneration approaches. Microsc. Res. Tech. 79:766–772, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
This paper describes the investigation of elastical properties and imaging of living cochlear hair bundles of inner (IHC) and outer hair cells (OHC) on the level of individual stereocilia. A custom-made AFM-setup was used, allowing to scan the mechano-sensitive structures of the inner ear under direct control of an upright differential interference contrast (DIC) microscope with a water-immersion objective. Scanning electron microscopy (SEM) images of the identical hair bundles obtained after AFM investigation demonstrated that forces up to 1.5 nanonewton (nN) did not cause obvious damage of the surface morphology of the stereocilia. These are the first images of hair bundles of living sensory cells of the organ of Corti by AFM. They display the tips of individual stereocilia and the typical V-shape of ciliary bundles. Since line scans clearly show that slope and force interaction depend on the elastical properties of stereocilia, quantitative stiffness measurements and stimulation of single transduction channels are suggested.  相似文献   

12.
This paper concerns an important aspect of current developments in medical and biological imaging: the possibility for imaging soft tissue at relatively high resolution in the micrometer range or better, without tedious and/or entirely destructive sample preparation. Structures with low absorption contrast have been visualized using in-line phase contrast imaging. The experiments have been performed at the Advanced Photon Source, a third generation source of synchrotron radiation. The source provides highly coherent X-ray radiation with high photon flux (>10(14) photons/s) at high photon energies (5-70 keV). Thick gerbil cochlear slices have been imaged and were compared with those obtained by light microscopy. Furthermore, intact gerbil cochleae have been imaged to identify the soft tissue structures involved in the hearing process. The present experimental approach was essential for visualizing the inner ear structures involved in the hearing process in an intact cochlea.  相似文献   

13.
Based on insight obtained from a newly developed cochlea model, we argue that noise-driven limit cycles are the basic ingredient in the mammalian cochlea hearing process. For insect audition, we provide evidence in favor of the persistence of this principle. We emphasize the role of bifurcations for the emergence of broad-range sound perception, both in the frequency and amplitude domain, and indicate that this crucially depends on the correct coupling between limit cycles. We review the limit-cycle coupling universality, and outline how it can be used to encode information. Cortical noise is the microscopic basis for this encoding, whereas chaos emerges as the macroscopic expression of computation being done in the network. Large neuron firing variability is one possible consequence of the proposed mechanism that may apply to both vertebrate and insect hearing.  相似文献   

14.
Inner ear tissue of the normal guinea pig was conductively stained (OTOTO-method) for SEM investigations. The Hensen's cells of the organ of Corti were removed using a micromanipulator inside the SEM. By this method atypical bodies of sensory and supporting cells were revealed in the apical turns of the cochlea. Atypical sensory cells showed great variations in size and shape. Several had no contact to Deiter's cells and no or only one nerve supply at their basal end. Atypical Deiter's cells showed alterations in shape and in the form of their phalangeal processes. Additionally altered parts of the organ of Corti were isolated by micromanipulation and embedded for correlative TEM-investigations.  相似文献   

15.
针对现有声品质主动控制多以心理声学参数为控制目标,声品质改善能力不足,提出一种基于听觉传感策略的声品质主动控制系统。为了使控制系统能够融入听觉非线性特性,建立了包括外/中耳模型和内耳模型的听觉传感模型,其中在基底膜建模时,考虑毛细胞对基底膜具有反馈运动调节作用,采用带宽时变的gammatone滤波器模型,该滤波器可模拟出听觉在频率和强度感知方面的非线性特性。然后,以听觉信号平方最小为控制目标,给出了基于听觉传感的主动控制系统结构,为了解决听觉传感环节的加入带来的算法计算量增加和收敛性变差问题,基于x滤波最小均方(Filtered-x least mean square,FLMS)算法,提出了延迟补偿结构与逆模型结构相结合的听觉控制算法。最后,以车速50km/h的汽车车内声为对象进行主动控制仿真,对控制前后的车内声进行了声品质客观与主观评价,并对评价结果进行比较与分析,主客观评价一致表明:与声压控制相比,听觉控制可以更好地改善听觉舒适性。  相似文献   

16.
The cochleas of four human fetuses ranging 22–25 weeks gestation were studied by scanning electron microscopy (SEM) for the purpose of obtaining a better understanding of the nerve fiber arrangement in the human ear. After critical point drying, the specimens were dissected and the floor of the tunnel of Corti and the outer wall of Nuel's space were exposed for observation. Upper cochlear turns, especially the apical turn, seemed to be still immature. Observed nerve fibers were classified into three types:
  • 1 Spiral fibers: Fibers traveling basalward and following the shape of the cochlea were found in both the tunnel of Corti and Nuel's space and believed to be the afferent nerves responsible for innervating the outer hair cells
  • 2 Radial fibers: radiating outward from the osseous spiral lamina—one such radial fiber transversing high in the tunnel space (supposedly the efferent nerve servicing the outer hair cells), and another sort of radial fiber (found crossing the tunnel floor), the nature of which was uncertain.
  • 3 Irregular fibers: Consisting of thin, randomly running fibers within the cochlea. The destination of these fibers was not determined, but possibly they represent transitory nerve branchings of afferent or more probably efferent nerves, which would later regress during maturation.
  相似文献   

17.
This paper presents the works and methods of our respective laboratories using electron microscopic immunocytochemistry to identify and localize cochlear neurotransmitters. Antibodies to various prospective neurotransmitters and associated enzymes have been used to study the ultrastructural localization of several candidates for olivocochlear efferent neurotransmitters previously suggested by light microscopic immunocytochemistry. Antibodies against enkephalins label lateral olivocochlear efferent fibers. Antibodies against choline acetyltransferase (ChAT) (an enzyme marker for acetylcholine) label a major population of both lateral and medial efferent fibers and terminals, whereas antibodies to γ-aminobutyric acid (GABA) label what might be a small subpopulation of both the lateral and medial efferent systems. The GABA-like immunostained medial efferent fibers are preferentially located in the upper turns of the guinea pig cochlea, particularly the third turn. Immunoelectron microscopy shows that neither GABA nor ChAT immunolabels all medial efferent terminals, regardless of cochlear turn. All the different types of immunolabeled efferent terminals have been observed to make characteristic synaptic contacts; lateral efferent terminals on afferent dendrites and medial efferent terminals on outer hair cells and occasionally on type II afferent dendrites. Other types of contacts involving GABA-like, and sometimes met-enkephalin-like, immunostained fibers are occasionally seen particularly in the upper turns of the cochlea. Immunoelectron microscopic results suggest that both medial and lateral efferent systems might be further subdivided on the basis of differences in neurotransmitters. Future trends of immunocytochemical research on cochlear neurotransmitters are proposed, particularly colocalization studies, which show a complex pattern of coexistence of neurotransmitters in the lateral efferent system.  相似文献   

18.
TRPV4 is a nonselective cation channel that belongs to the vanilloid (V) subfamily of transient receptor potential (TRP) ion channels. While TRP channels have been found to be involved in sensing temperature, light, pressure, and chemical stimuli, TPRV4 is believed to be primarily a mechanosensor although it can also respond to warm temperatures, acidic pH, and several chemical compounds. In zebrafish, the expression of trpv4 has been studied during embryonic development, whereas its pattern of TPRV4 expression during the adult life has not been thoroughly analyzed. In this study, the occurrence of TRPV4 was addressed in the zebrafish sensory organs at the mRNA (RT-PCR) and protein (Westernblot) levels. Once the occurrence of TRPV4 was demonstrated, the TRPV4 positive cells were identified by using immunohistochemistry. TPRV4 was detected in mantle and sensory cells of neuromasts, in a subpopulation of hair sensory cells in the macula and in the cristae ampullaris of the inner ear, in sensory cells in the taste buds, in crypt neurons and ciliated sensory neurons of the olfactory epithelium, and in cells of the retina. These results demonstrate the presence of TRPV4 in all sensory organs of adult zebrafish and are consistent with the multiple physiological functions suspected for TRPV4 in mammals (mechanosensation, hearing, and temperature sensing), but furthermore suggest potential roles in olfaction and vision in zebrafish.  相似文献   

19.
The morphology of hair bundles has been studied by high resolution scanning electron microscopy using a variety of fixatives, including glutaraldehyde, glutaraldehyde-picrate, glutaraldehyde-tannic acid, glutaraldehyde followed by post-fixation in osmium tetroxide, and the osmium thiocarbohydrazide technique. Critical evaluation of several metal coatings, gold, gold-palladium, and platinum has been carried out. Both the surface texture of stereocilia and their cross-links are sensitive to fixation and metal coating. We are of the opinion that glutaraldehyde gives the best general quality of fixation and preservation for all types of cross-links. We have described three major sets of cross-links: first, lateral links connecting stereocilia within the same row; second, lateral links connecting stereocilia of adjacent rows; and third, upward-pointing links, one per stereocilium, connecting the tip of each shorter stereocilium to the lateral surface of the adjacent taller stereocilium. Current physiological and anatomical evidence suggests that the lateral links couple the individual stereocilia within the hair bundle so that they function as a single mechanical unit. The upward-pointing tip links are ideally placed to respond to mechanical deformation of the hair bundle, being stretched when the stereocilia are deflected in the excitatory direction towards the tallest row and relaxed when deflected in the opposite, inhibitory direction. Postmortem morphological changes are detected within 15 minutes of cardiac arrest and become progressively more pronounced in time. These results enabled us to distinguish specific druginduced changes which could not be attributed simply to cell death. Effects of cisplatin and kanamycin upon hair bundles are described. The work reported here is based on studies using the guinea pig cochlea. Some of the postmortem changes described have also been confirmed in human cochleas. It is stressed that many of the postmortem and drug-induced effects can only reliably be studied by high resolution scanning electron microscopy coupled with appropriate prearation procedures.  相似文献   

20.
In the head of the Oriental hornet, beneath the cuticle, there are plaques of hair cells. These are distributed throughout the upper front part of the head; to wit: in the region of the vertex (i.e., around and behind the ocelli), in the genae around and behind the compound eyes (the ommatidia), and in the region of the forehead or frons. These hair cells are arranged with their thin whip-like part (i.e., cilia) directed outward and morphologically fall into three distinct groups: type (a) thin elongated cilia connected to each other alongside by side-links; type (b) thin elongated cilia of which two or more interconnect at their distal ends via a delicate nerve fiber bearing a knob at its center; and type (c) shorter and thicker cilia that roughly resemble a triangular thorn and are also interconnected by a thin thread, which, however, bears a ball rather then a knob at its center. The knob in the one case and the ball in the other vary in their diameter, but in both instances the interconnecting elements, be they nerve fibers or threads, are seemingly multidirectional. Beneath the frons, in the region of the coronal suture, the hair cells (cilial plaques) are inwardly directed and bear a large trachea at their center. Presumably, the "weighted" cilial cells that are directed toward the exterior of the body aid the hornet in navigation and gravity determination whereas the inwardly directed ciliary cells may possibly serve in acoustic communication. Another element worthy of mention within the hair cells are yellow granules (yg). These yg's originate from the whip-like portion of the ciliary cells that are distributed beneath the frons plate, and also in the yellow stripes of the gastral cuticle. Conceivably, these yellow granules, in both cases, may play a role in the absorption and storage of solar energy. In summary, ciliary structures are involved in the hornet in gravity sensing, in acoustical communication and in light sensing, i.e., with some similarity with what happens in vertebrates in the inner ear and in the photoreceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号