首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the actin cytoskeleton and/or GTPases of the Rho/Rac-family in glucose transport regulation was investigated in 3T3-L1 cells with clostridial toxins which depolymerize actin by inactivation of Rho/Rac (Clostridium difficile toxin B and Clostiridium sordellii lethal toxin (LT)) or by direct ADP-ribosylation (Clostridium botulinum C2 toxin). Toxin B and C2 reduced insulin-stimulated, but not basal, 2-deoxyglucose (2-DOG) uptake rates in 3T3-L1 fibroblasts. In parallel, the toxins produced morphological alterations of the cells reflecting disruption of the actin cytoskeleton. Both toxins reduced the maximum response to insulin but failed to alter the half-maximally stimulating concentrations of insulin. In 3T3-L1 adipocytes, the lethal toxin reduced the effect of insulin on 2-DOG uptake, whereas toxin B and C2 failed to affect glucose transport or cell morphology. When cells were exposed to the toxins after treatment with insulin, both toxin B and the lethal toxin, in contrast to the phosphatidylinositol (PI) 3-kinase inhibitor wortmannin, failed to reduce the 2-DOG uptake rates. Thus, both translocation to the plasma membrane and internalization of glucose transporters were inhibited by the toxins, whereas the PI 3-kinase inhibitor selectively affects translocation. The data suggest that the effects of the clostridial toxins on trafficking of glucose transporters are mediated by the depolymerization of the actin cytoskeleton and are an indirect consequence of Rho or Rac inactivation. It is suggested that pathways signalling through Rac or Rho may play a modulatory role in glucose transport regulation through their effects on the actin network.  相似文献   

2.
3.
Post-receptor signalling molecules that convey the signal from the activated insulin receptor to the actual process of Glut4 translocation and hexose uptake are poorly understood. Various studies have suggested a requirement of the lipid kinase phosphatidylinositol-3 kinase (PI3-kinase) in this process. PI3kinase regulates the activation status of the small GTP-binding protein Rac which, in turn, is able to activate another G-protein Rho. Rac and Rho are known to regulate the structure of the membrane- and cytoplasmic actin-cytoskeleton. We have examined whether Rac and Rho transfer the signals generated by PI3kinase towards insulin-stimulated hexose uptake. For that purpose, we expressed in 3T3-L1 adipocytes the dominant-negative mutant of RacN17 using vaccinia virus-mediated gene transfer. The expression levels of the RacN17 protein were monitored by Western blotting. The abrogation of endogenous Rac signalling by expression of RacN17 was inferred from the observed loss of arachidonic acid release in response to insulin. Basal and insulin-stimulated hexose transport were not affected by expression of the RacN17 mutant. A possible contribution of Rho.GTP to stimulation of hexose uptake was examined by pre-incubation of adipocytes with lysophosphatidic acid (LPA). We observed a profound effect of LPA on the structure of the cytoskeleton and on the phosphorylation of Focal Adhesion Kinase (p125FAK), indicating that 3T3-L1 adipocytes respond to LPA and that Rho was activated by LPA. However, no effect was detected on the basal or on the insulin-stimulated hexose transport. We conclude that Rac and Rho are unlikely to be involved in insulin-stimulated hexose transport, suggesting a possible contribution of other signalling pathways, downstream of PI3kinase to this process.  相似文献   

4.
Vanadate stimulates adipocyte 2-deoxyglucose transport and GLUT-4 translocation to the membrane through an insulin receptor-independent but wortmannin-inhibitable pathway. Vanadate stimulates PI 3-kinase in anti-IRS-1 immunoprecipitates and the binding between IRS-1 and the p85alpha subunit of PI 3-kinase. In insulin-resistant adipocytes from old rats vanadate fully stimulates IRS-1-associated PI 3-kinase, but partially activates glucose uptake. We conclude that: (a) vanadate stimulates 2-deoxyglucose uptake using a pathway that converges with that of insulin at the level of PI 3-kinase; and (b) adipocytes from old rats are defective in the insulin pathway at steps located both upstream and downstream of PI 3-kinase.  相似文献   

5.
Phospholipase C-gamma (PLCgamma) is the isozyme of PLC phosphorylated by multiple tyrosine kinases including epidermal growth factor, platelet-derived growth factor, nerve growth factor receptors, and nonreceptor tyrosine kinases. In this paper, we present evidence for the association of the insulin receptor (IR) with PLCgamma. Precipitation of the IR with glutathione S-transferase fusion proteins derived from PLCgamma and coimmunoprecipitation of the IR and PLCgamma were observed in 3T3-L1 adipocytes. To determine the functional significance of the interaction of PLCgamma and the IR, we used a specific inhibitor of PLC, U73122, or microinjection of SH2 domain glutathione S-transferase fusion proteins derived from PLCgamma to block insulin-stimulated GLUT4 translocation. We demonstrate inhibition of 2-deoxyglucose uptake in isolated primary rat adipocytes and 3T3-L1 adipocytes pretreated with U73122. Antilipolytic effect of insulin in 3T3-L1 adipocytes is unaffected by U73122. U73122 selectively inhibits mitogen-activated protein kinase, leaving the Akt and p70 S6 kinase pathways unperturbed. We conclude that PLCgamma is an active participant in metabolic and perhaps mitogenic signaling by the insulin receptor in 3T3-L1 adipocytes.  相似文献   

6.
The protein product of the c-Cbl proto-oncogene is prominently tyrosine phosphorylated in response to insulin in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. After insulin-dependent tyrosine phosphorylation, c-Cbl specifically associates with endogenous c-Crk and Fyn. These results suggest a role for tyrosine-phosphorylated c-Cbl in 3T3-L1 adipocyte activation by insulin. A yeast two-hybrid cDNA library prepared from fully differentiated 3T3-L1 adipocytes was screened with full-length c-Cbl as the target protein in an attempt to identify adipose-specific signaling proteins that interact with c-Cbl and potentially are involved in its tyrosine phosphorylation in 3T3-L1 adipocytes. Here we describe the isolation and the characterization of a novel protein that we termed CAP for c-Cbl-associated protein. CAP contains a unique structure with three adjacent Src homology 3 (SH3) domains in the C terminus and a region showing significant sequence similarity with the peptide hormone sorbin. Both CAP mRNA and proteins are expressed predominately in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. CAP associates with c-Cbl in 3T3-L1 adipocytes independently of insulin stimulation in vivo and in vitro in an SH3-domain-mediated manner. Furthermore, we detected the association of CAP with the insulin receptor. Insulin stimulation resulted in the dissociation of CAP from the insulin receptor. Taken together, these data suggest that CAP represents a novel c-Cbl binding protein in 3T3-L1 adipocytes likely to participate in insulin signaling.  相似文献   

7.
Phosphoinositide (PI) 3-kinase contributes to a wide variety of biological actions, including insulin stimulation of glucose transport in adipocytes. Both Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, and atypical isoforms of protein kinase C (PKCzeta and PKClambda) have been implicated as downstream effectors of PI 3-kinase. Endogenous or transfected PKClambda in 3T3-L1 adipocytes or CHO cells has now been shown to be activated by insulin in a manner sensitive to inhibitors of PI 3-kinase (wortmannin and a dominant negative mutant of PI 3-kinase). Overexpression of kinase-deficient mutants of PKClambda (lambdaKD or lambdaDeltaNKD), achieved with the use of adenovirus-mediated gene transfer, resulted in inhibition of insulin activation of PKClambda, indicating that these mutants exert dominant negative effects. Insulin-stimulated glucose uptake and translocation of the glucose transporter GLUT4 to the plasma membrane, but not growth hormone- or hyperosmolarity-induced glucose uptake, were inhibited by lambdaKD or lambdaDeltaNKD in a dose-dependent manner. The maximal inhibition of insulin-induced glucose uptake achieved by the dominant negative mutants of PKClambda was approximately 50 to 60%. These mutants did not inhibit insulin-induced activation of Akt. A PKClambda mutant that lacks the pseudosubstrate domain (lambdaDeltaPD) exhibited markedly increased kinase activity relative to that of the wild-type enzyme, and expression of lambdaDeltaPD in quiescent 3T3-L1 adipocytes resulted in the stimulation of glucose uptake and translocation of GLUT4 but not in the activation of Akt. Furthermore, overexpression of an Akt mutant in which the phosphorylation sites targeted by growth factors are replaced by alanine resulted in inhibition of insulin-induced activation of Akt but not of PKClambda. These results suggest that insulin-elicited signals that pass through PI 3-kinase subsequently diverge into at least two independent pathways, an Akt pathway and a PKClambda pathway, and that the latter pathway contributes, at least in part, to insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

8.
Interaction of the activated insulin receptor (IR) with its substrate, insulin receptor substrate 1 (IRS-1), via the phosphotyrosine binding domain of IRS-1 and the NPXY motif centered at phosphotyrosine 960 of the IR, is important for IRS-1 phosphorylation. We investigated the role of this interaction in the insulin signaling pathway that stimulates glucose transport. Utilizing microinjection of competitive inhibitory reagents in 3T3-L1 adipocytes, we have found that disruption of the IR/IRS-1 interaction has no effect upon translocation of the insulin-responsive glucose transporter (GLUT4). The activity of these reagents was demonstrated by their ability to block insulin stimulation of two distinct insulin bioeffects, membrane ruffling and mitogenesis, in 3T3-L1 adipocytes and insulin-responsive rat 1 fibroblasts. These data suggest that phosphorylated IRS-1 is not an essential component of the metabolic insulin signaling pathway that leads to GLUT4 translocation, yet it appears to be required for other insulin bioeffects.  相似文献   

9.
Phosphatidylinositol 3-kinase (PI 3-K) is implicated in cellular events including glucose transport, glycogen synthesis, and protein synthesis. It is activated in insulin-stimulated cells by binding of the Src homology 2 (SH2) domains in its 85-kDa regulatory subunit to insulin receptor substrate-1 (IRS-1), and, others. We have previously shown that IRS-1-associated PI 3-kinase activity is not essential for insulin-stimulated glucose transport in 3T3-L1 adipocytes, and that alternate pathways exist in these cells. We now show that adenovirus-mediated overexpression of the p85N-SH2 domain in these cells behaves in a dominant-negative manner, interfering with complex formation between endogenous PI 3-K and its SH2 binding targets. This not only inhibited insulin-stimulated IRS-1-associated PI 3-kinase activity, but also completely blocked anti-phosphotyrosine-associated PI 3-kinase activity, which would include the non-IRS-1-associated activity. This resulted in inhibition of insulin-stimulated glucose transport, glycogen synthase activity and DNA synthesis. Further, Ser/Thr phosphorylation of downstream molecules Akt and p70 S6 kinase was inhibited. However, co-expression of a membrane-targeted p110(C) with the p85N-SH2 protein rescued glucose transport, supporting our argument that the p85N-SH2 protein specifically blocks insulin-mediated PI 3-kinase activity, and, that the signaling pathways downstream of PI 3-kinase are intact. Unexpectedly, GTP-bound Ras was elevated in the basal state. Since p85 is known to interact with GTPase-activating protein in 3T3-L1 adipocytes, the overexpressed p85N-SH2 peptide could titrate out cellular GTPase-activating protein by direct association, such that it is unavailable to hydrolyze GTP-bound Ras. However, insulin-induced mitogen-activated protein kinase phosphorylation was inhibited. Thus, PI 3-kinase may be required for this action at a step independent of and downstream of Ras. We conclude that, in 3T3-L1 adipocytes, non-IRS-1-associated PI 3-kinase activity is crucial for insulin's metabolic signaling, and that overexpressed p85N-SH2 protein inhibits a variety of insulin's ultimate biological effects.  相似文献   

10.
Tumor necrosis factor-alpha (TNF alpha) is a cytokine implicated in the development of septic shock, cachexia, and other pathological states. Recent studies indicated a direct role for adipose expression of TNF alpha in obesity-linked insulin resistance and diabetes. Pioglitazone, CP-86,325 (CP), AD-5075, CS-045, ciglitazone, and englitazone are members of a new class of insulin-sensitizing thiazolidinedione derivatives with in vivo antidiabetic activities. To test whether these agents antagonize the effect of TNF alpha, 3T3-L1 cells were induced to differentiate in the presence of TNF alpha with or without thiazolidinedione derivatives. Incubation of 3T3-L1 cells with TNF alpha alone completely inhibited adipocyte conversion and expression of fatty acid-binding protein messenger RNA (mRNA). However, coincubation of TNF alpha-treated cells with CP (1 microM), AD-5075 (1 microM), pioglitazone (10 microM), or CS-045 (10 microM) blocked these effects. Long term incubation of 3T3-L1 adipocytes with a low dose of TNF alpha (50 pM) significantly decreased the levels of the adipocyte/muscle-specific glucose transporter (GLUT4) and the CCAAT enhancer-binding protein mRNAs, but did not affect expression of the ubiquitously expressed glucose transporter (GLUT1) or lipoprotein lipase mRNAs. Incubation of 3T3-L1 adipocytes with TNF alpha also inhibited insulin-stimulated 2-deoxyglucose uptake as well as expression of GLUT4 protein. Furthermore, in 3T3-L1 adipocytes, incubation with TNF alpha attenuated the expression of fatty acid-binding protein mRNA in a time- and dose-dependent manner. These inhibitory effects were partially or completely blocked by coincubation of the cells with CP. These results implicate that the insulin-sensitizing agents may exert their antidiabetic activities by antagonizing the inhibitory effects of TNF alpha.  相似文献   

11.
The effects of insulin and platelet-derived growth factor (PDGF) on glycogen synthase activation were compared in 3T3-L1 fibroblasts and adipocytes. In the fibroblasts, PDGF elicited a stronger phosphorylation of mitogen-activated protein kinase (MAPK) and AKT than did insulin. Both agents caused a comparable stimulation of receptor autophosphorylation, MAPK, and phosphatidylinositol 3-kinase (PI3-K) activation in the adipocytes. However, adipogenesis resulted in the uncoupling of PI3-K activation by PDGF from subsequent AKT phosphorylation. The relative contributions of glycogen synthase kinase-3 (GSK-3) inactivation and protein phosphatase-1 (PP1) activation in the regulation of glycogen synthase in both cell types were evaluated. Insulin and PDGF caused a small increase in glycogen synthase a activity in the fibroblasts. Additionally, both agents caused a similar inhibition of GSK-3, while having no effect on PP1 activity. Following differentiation, insulin treatment resulted in a 5-fold stimulation of glycogen synthase, whereas PDGF was without effect. Both agents caused a comparable inhibition of GSK-3 activity in the adipocytes, whereas only insulin activated PP1. Finally, wortmannin completely blocked the stimulation of PP1 by insulin in 3T3-L1 adipocytes, indicating that PI3-K inhibition can impinge on PP1 activation. Cumulatively these results suggest that the weak activation of glycogen synthase in 3T3-L1 fibroblasts is mediated by GSK-3 inactivation, whereas in the more metabolically active adipocytes, the insulin-specific activation of glycogen synthase is mediated by PP1 activation.  相似文献   

12.
Sulfonylureas interact with specific, high affinity receptors on the pancreatic beta-cell to close ATP-sensitive K+ channels, depolarize the cell, activate Ca2+ influx through voltage-dependent Ca2+ channels, and trigger insulin secretion. We tested the hypothesis that sulfonylureas promote glucose uptake into 3T3-L1 cells or isolated rat adipocytes by similar mechanisms. Using 125I-labeled 5-iodo-2-hydroxyglyburide and either equilibrium binding or photoaffinity labeling, a high affinity sulfonylurea receptor was not found on plasma membranes of either the 3T3-L1 cells or rat adipocytes. Furthermore, glyburide did not inhibit 86Rb+ efflux (a marker for ATP-sensitive K+ channel conductance), increase free cytosolic calcium in adipocytes or 3T3-L1 cells, or increase basal or insulin-stimulated glucose uptake into 3T3-L1 cells or rat adipocytes. Parallel studies using a hamster insulin-secreting tumor cell line (HIT cells) easily demonstrated both the receptor and biological effects of glyburide on free cytosolic calcium and insulin secretion. Thus, rat adipocytes and 3T3-L1 cells do not possess the high affinity sulfonylurea receptor or respond to glyburide alone. We conclude that the antidiabetogenic effects of sulfonylureas are not mediated by a direct action of sulfonylureas to increase glucose uptake into adipose tissue and suggest that the major locus for sulfonylurea action is the beta-cell.  相似文献   

13.
In rat adipocytes and soleus muscles, 2-hydroxypropyl-beta-cyclodextrin (CD) was found to have a relatively small or no effect on basal or insulin-stimulated hexose uptake, but markedly enhanced hexose uptake effects of phorbol esters and/or diacylglycerol. In rat adipocytes, the CD-induced enhancement of hexose uptake during concurrent phorbol ester treatment was not associated with an increase in GLUT4 glucose transporter translocation to the plasma membrane, which was stimulated comparably by insulin and phorbol esters. Moreover, CD appeared to activate or facilitate the activation of glucose transporters subsequent to their translocation to the plasma membrane during ongoing phorbol ester treatment. In rat adipocytes, CD also enhanced the translocation of protein kinase C (PKC)-beta to the plasma membrane during the action of phorbol esters, which alone had little or no effect on this specific PKC translocation. Although it is uncertain how CD alters the function of plasma membranes to enhance the translocation of PKC-beta to, and the activation of glucose transporters within, this subcellular fraction during phorbol ester treatment, our findings provide direct support for a two-step model in the activation of glucose transport. In addition, it seems clear that, at least in some cell types, simple phorbol ester treatment does not necessarily serve as a ubiquitous activator of all activable PKC pools and all potential PKC-mediated responses.  相似文献   

14.
Phosphoinositide 3-OH kinases and their products, D-3 phosphorylated phosphoinositides, are increasingly recognized as crucial elements in many signaling cascades. A reliable means to introduce these lipids into intact cells would be of great value for showing the physiological roles of this pathway and for testing the specificity of pharmacological inhibitors of the kinases. We have stereospecifically synthesized di-C8-PIP3/AM and di-C12-PIP3/AM, the heptakis(acetoxymethyl) esters of dioctanoyl- and dilauroylphosphatidylinositol 3,4,5-trisphosphate, in 14 steps from myo-inositol. The ability of these uncharged lipophilic derivatives to deliver phosphatidylinositol 3,4,5-trisphosphate across cell membranes was demonstrated on 3T3-L1 adipocytes and T84 colon carcinoma monolayers. Insulin stimulation of hexose uptake into adipocytes was inhibited by the kinase inhibitor wortmannin and was largely restored by di-C8-PIP3/AM, which had no effect in the absence of insulin. Thus phosphatidylinositol 3,4,5-trisphosphate or a metabolite was necessary but not sufficient for stimulation of hexose transport. In T84 epithelial monolayers, di-C12-PIP3/AM mimicked epidermal growth factor in inhibiting chloride secretion and potassium efflux, suggesting that phosphatidylinositol 3,4, 5-trisphosphate was sufficient to modulate these fluxes and mediate epidermal growth factor's action.  相似文献   

15.
Phosphatidylinositol (PI) 3-kinase is hypothesized to be a signaling element in the acute redistribution of intracellular GLUT4 glucose transporters to the plasma membrane in response to insulin. However, some receptors activate PI 3-kinase without causing GLUT4 translocation, suggesting specific cellular localization may be critical to this PI 3-kinase function. Consistent with this idea, complexes containing PI 3-kinase bound to insulin receptor substrate 1 (IRS-1) in 3T3-L1 adipocytes are associated with intracellular membranes (Heller-Harrison, R., Morin, M. and Czech, M. (1995) J. Biol. Chem. 270, 24442-24450). We report here that in response to insulin, activated complexes of IRS-1.PI 3-kinase can be immunoprecipitated with anti-IRS-1 antibody from detergent extracts of immunoadsorbed GLUT4-containing vesicles prepared from 3T3-L1 adipocytes. The targeting of PI 3-kinase to rat adipocyte GLUT4-containing vesicles using vesicles prepared by sucrose velocity gradient ultracentrifugation was also demonstrated. Insulin treatment caused a 2.3-fold increase in immunoreactive p85 protein in these GLUT4-containing vesicles while anti-p85 immunoprecipitates of PI 3-kinase activity in GLUT4-containing vesicle extracts increased to a similar extent. HPLC analysis of the GLUT4 vesicle-associated PI 3-kinase activity showed insulin-mediated increases in PI 3-P, PI 3,4-P2, and PI 3,4,5-P3 when PI, PI 4-P, and PI 4,5-P2 were used as substrates. Our data demonstrate that insulin directs the association of PI 3-kinase with GLUT4-containing vesicles in 3T3-L1 and rat adipocytes, consistent with the hypothesis that PI 3-kinase is involved in the insulin-regulated movement of GLUT4 to the plasma membrane.  相似文献   

16.
Glucosamine, which enters the hexosamine pathway downstream of the rate-limiting step, has been routinely used to mimic the insulin resistance caused by high glucose and insulin. We investigated the effect of glucosamine on insulin-stimulated glucose transport in 3T3-L1 adipocytes. The Delta-insulin (insulin-stimulated minus basal) value for 2-deoxyglucose uptake was dramatically inhibited with increasing concentrations of glucosamine with an ED50 of 1.95 mM. Subcellular fractionation experiments demonstrated that reduction in insulin-stimulated 2-deoxyglucose uptake by glucosamine was due to an inhibition of translocation of both Glut 1 and Glut 4 from the low density microsomes (LDM) to the plasma membrane. Analysis of the insulin signaling cascade revealed that glucosamine impaired insulin receptor autophosphorylation, insulin receptor substrate (IRS-1) phosphorylation, IRS-1-associated PI 3-kinase activity in the LDM, and AKT-1 activation by insulin. Measurement of intracellular ATP demonstrated that the effects of glucosamine were highly correlated with its ability to reduce ATP levels. Reduction of intracellular ATP using azide inhibited Glut 1 and Glut 4 translocation from the LDM to the plasma membrane, insulin receptor autophosphorylation, and IRS-1 tyrosine phosphorylation. Additionally, both the reduction in intracellular ATP and the effects on insulin action caused by glucosamine could be prevented by the addition of inosine, which served as an alternative energy source in the medium. We conclude that direct administration of glucosamine can rapidly lower cellular ATP levels and affect insulin action in fat cells by mechanisms independent of increased intracellular UDP-N-acetylhexosamines and that increased metabolism of glucose via the hexosamine pathway may not represent the mechanism of glucose toxicity in fat cells.  相似文献   

17.
Mechanisms of decreased insulin responsiveness of large adipocytes   总被引:1,自引:0,他引:1  
We have studied glucose metabolism using large adipocytes isolated from older, fatter rats (greater than 12 months old, greater than 550 g), and smaller cells obtained from younger, leaner animals (4-5 weeks old, 126-160 g). 2-Deoxyglucose uptake was equal in large and small adipocytes, while insulin mediated oxidation of [1(-14)C]glucose was greatly diminished (7-fold) in large cells. Thus, the defect in oxidation of the number one carbon atom of glucose (pentose pathway oxidation) is distal to the 2-deoxyglucose uptake system. However, this intracellular defect is not present in all pathways of glucose oxidation as demonstrated by the finding that [6(-14)C]glucose oxidation was comparable in small and large adipocytes. Thus, the number six carbon atom of glucose is oxidized normally indicating that glycolytic and Krebs cycle activity is intact in the large adipocyte. Furthermore, in large adipocytes conversion of glucose to total lipid was normal in the basal state and moderately decreased at high glucose concentrations in the presence of insulin (up to 35%). When the radioactivity in total lipids was fractionated, a severe decrease in glucose incorporation into fatty acids was found in the large cells. Total glucose uptake was also measured, and found to be 10-50% decreased in large cells, suggesting that the decreases in pentose pathway glucose metabolism and conversion to fatty acids lead to accumulation of free intracellular glucose with glucose efflux and a decrease in net glucose uptake. Comparing the 2-deoxyglucose uptake and glucose oxidation data showed that insulin promotes [6(-14)C]glucose oxidation by stimulating the processes responsible for 2-deoxyglucose uptake whereas insulin promotes [1(-14)C]glucose oxidation both by increasing these processes and by increasing the activity of the C-1 oxidative pathway. In conclusion: 1) the 2-deoxyglucose uptake system of the large adipocyte is basically intact, 2) [1(-14)C]glucose oxidation is markedly decreased in large adipocytes, while [6(-14)C]glucose oxidation is normal, and 3) in comparing small and large adipocytes, it appears that it is the ability of insulin to enhance glucose oxidation via the pentose pathway and to promote glucose incorporation into fatty acids which is most impaired in large adipocytes.  相似文献   

18.
GLUT-2 differs from other members of the facilitated glucose transporter family because it transports a wider range of substrates and exhibits a higher Km for transport of glucose analogs such as 2-deoxyglucose (2-DOG). In order to investigate the structural determinants of the unique substrate specificity and kinetic function of GLUT-2, recombinant adenoviruses were used to express native, mutant, and chimeric glucose transporters in the kidney cell line CV-1, yielding the following key observations. (1) A chimera consisting of GLUT-1 with the C-terminal tail of GLUT-2 had a Km for 2-DOG of 9.9 +/- 1.5 that was intermediate between that of native GLUT-1 (3.7 +/- 0.4) and native GLUT-2 (26.3 +/- 3.3). In contrast to the effect of the GLUT-2 C terminus on Km for 2-DOG, this substitution did not confer enhanced uptake of three alternative substrates (fructose, arabinose, or streptozotocin) which are transported efficiently by native GLUT-2 but not by GLUT-1. (2) A chimera consisting of GLUT-2 with the N-terminal 87 amino acids of GLUT-1 exhibited no change in Km for 2-DOG relative to native GLUT-2 but exhibited a significant reduction in capacity for transport of the three alternative substrates. (3) Mutation of asparagine 62 in GLUT-2 to glutamine produced a transporter lacking its N-linked oligosaccharide that exhibited a 2.5-fold increase in Km for 2-DOG but equally efficient transport of the three alternative substrates relative to native GLUT-2. These data provide insight into structural domains that affect substrate specificity in facilitated glucose transporters and demonstrate that they are distinct from elements involved in glucose transport kinetics.  相似文献   

19.
The targeting of the insulin-responsive glucose transporter, GLUT-4, to an intracellular compartment in adipocytes and muscle is one of the key features responsible for the unique insulin sensitivity of this transporter. Through expression of epitope-tagged GLUT-4 mutants in 3T3-L1 adipocytes, two motifs have been identified as playing a central role in GLUT-4 targeting: FQQI in the amino terminus and a di-leucine motif in the carboxy terminus. The goal of this study was to explore the role of these targeting motifs in the intracellular sorting of GLUT-4 using the Tf-HRP ablation technique. This technique provides a quantitative assessment of the amount of GLUT-4 located in recycling endosomes. In basal adipocytes, we find that approximately 40% of GLUT-4 is ablated following Tf-HRP loading. In contrast, here we demonstrate that the intracellular pool of a mutant in which F5 was mutated to A5 is localized to the recycling endosomal pathway, suggesting that the amino terminal FQQI motif functions in trafficking GLUT-4 from early endosomes. In contrast, GLUT-4 in which L489L490 was mutated to A489A490 was localized predominantly to a nonablated compartment. These data imply a role for the di-leucine motif in sorting from a separate intracellular compartment, such as the TGN. Our findings are discussed within the context of a revised multicompartment model for GLUT-4 trafficking in adipocytes, in which mutations in either the FQQI or LL motifs result in the altered subcellular trafficking of GLUT-4 between multiple intracellular compartments.  相似文献   

20.
Phosphatidylinositol 3-kinase (PI 3-kinase) activation promotes glucose transporter 4 (Glut 4) translocation in adipocytes. In this study, we demonstrate that protein kinase B, a serine/threonine kinase stimulated by PI 3-kinase, is activated by both insulin and okadaic acid in isolated adipocytes, in parallel with their effects on Glut 4 translocation. In 3T3-L1 adipocytes, platelet-derived growth factor activated PI 3-kinase as efficiently as insulin but was only half as potent as insulin in promoting protein kinase B (PKB) activation. To look for a potential role of PKB in Glut 4 translocation, adipocytes were transfected with a constitutively active PKB (Gag-PKB) together with an epitope tagged transporter (Glut 4 myc). Gag-PKB was associated with all membrane fractions, whereas the endogenous PKB was mostly cytosolic. Expression of Gag-PKB led to an increase in Glut 4 myc amount at the cell surface. Our results suggest that PKB could play a role in promoting Glut 4 appearance at the cell surface following exposure of adipocytes to insulin and okadaic acid stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号