首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the current transportation mechanism of HfO2 gate dielectrics with a TaN metal gate and silicon surface fluorine implantation is investigated. Based on the experimental results of the temperature dependence of gate leakage current and Fowler-Nordheim tunneling characteristics at 77 K, we have extracted the current transport mechanisms and energy band diagrams for TaN/HfO2/IL/Si structures with fluorine incorporation, respectively. In particular, we have obtained the following physical quantities: 1) fluorinated and as-deposited interfacial layer (IL)/Si barrier heights (or conduction band offsets) at 3.2 and 2.7 eV; 2) TaN/fluorinated and as-deposited HfO2 barrier heights at 2.6 and 1.9 eV; and 3) effective trapping levels at 1.25 eV (under both gate and substrate injections) below the HfOF conduction band and at 1.04 eV (under gate injection) and 1.11 eV (under substrate injection) below the HfO2 conduction band, which contributes to Frenkel-Poole conduction.  相似文献   

2.
A model is established to describe the temperature dependence of the electron tunneling current through HfO2 gate stacks based on analyzing the coupling between the longitudinal and transverse components of electron thermal energy caused by the difference of the effective electron mass between the HfO2 gate stacks and silicon. By analyzing the three-dimensional Schrodinger equation for a MOS structure with HfO2 gate stacks, a reduction in the barrier height is resulted from the large effective electron mass mismatch between the gate oxide and the gate (substrate). The calculated electron tunneling currents agree well with the experimental data over a wide temperature range. This coupling model can explain the temperature dependence of the electron tunneling current through HfO2 gate stacks very well. The numerical results also demonstrate that the temperature dependence of the electron tunneling current strongly depends on the effective electron mass of HfO2. This temperature sensitivity of the electron tunneling current can be proposed as a novel method to determine the effective electron mass of the gate oxide.  相似文献   

3.
Novel yttrium- and terbium-based interlayers (YIL and TbIL, respectively) on SiO2 and HfO2 gate dielectrics were employed for NMOS work function Phim modulation of undoped nickel fully silicided (Ni-FUSI) gate. Bandedge Ni-FUSI gate Phim of ~4.11 and ~4.07 eV was obtained by insertion of ultrathin (~1 nm) YIL and TbIL, respectively, on the SiO2 gate dielectric in a gate-first process (with 1000 degC anneal). NiSi Phim on SiO2 could also be tuned between the Si midgap and the conduction bandedge EC by varying the interlayer thickness. The achievement of NiSi Phim around 4.28 eV on the HfO2 gate dielectric using interlayer insertion makes this an attractive Phim modulation technique for Ni-FUSI gates on SiO2 and high-k dielectrics  相似文献   

4.
In this paper, we investigate the tunneling properties of ZrO2 and HfO2 high-k oxides, by applying quantum mechanical methods that include the full-band structure of Si and oxide materials. Semiempirical sp3s*d tight-binding parameters have been determined to reproduce ab-initio band dispersions. Transmission coefficients and tunneling currents have been calculated for Si/ZrO2/Si and Si/HfO2/Si MOS structures, showing a very low gate leakage current in comparison to SiO2-based structures with the same equivalent oxide thickness. The complex band structures of ZrO2 and HfO2 have been calculated and used to develop an energy-dependent effective tunneling mass model. We show that effective mass calculations based on this model yield tunneling currents in close agreement with full-band results.  相似文献   

5.
Fowler-Nordheim (FN) tunnel current and oxide reliability of PRiLOS capacitors with a p+ polycrystalline silicon (poly-Si) and polycrystalline germanium-silicon (poly-Ge0.3Si0.7 ) gate on 5.6-nm thick gate oxides have been compared. It is shown that the FN current depends on the gate material and the bias polarity. The tunneling barrier heights, φB, have been determined from FN-plots. The larger barrier height for negative bias, compared to positive bias, suggests that electron injection takes place from the valence band of the gate. This barrier height for the GeSi gate is 0.4 eV lower than for the Si gate due to the higher valence band edge position. Charge-to-breakdown (Qbd) measurements show improved oxide reliability of the GeSi gate on of PMOS capacitors with 5.6 nm thick gate oxide. We confirm that workfunction engineering in deep submicron MOS technologies using poly-GeSi gates is possible without limiting effects of the gate currents and oxide reliability  相似文献   

6.
Recent band structure calculations indicate, that ruthenium silicide (Ru2Si3) is semiconducting with a direct band gap. Electrical measurements lead to a band gap around 0.8 eV which is technologically important for fiber communications. This makes Ru2Si3 a promising candidate for silicon-based optical devices, namely LEDs. We present results on the epitaxial growth of ruthenium silicide films on Si(100) and Si(111) fabricated by the template method, a special molecular beam epitaxy technique. We structurally characterized the films by Rutherford backscattering and ion channeling, X-ray diffraction and transmission electron microscopy. To determine the electrical resistivity at high temperatures films were grown on insulating substrates to prevent parallel conduction through the substrate. Finally we show first results of the optical absorption performed by photothermal deflection spectroscopy indicating pronounced absorption above 1.5 eV.  相似文献   

7.
We have developed lattice-matched InP/GaAs0.51Sb0.49/InP NpN double heterojunction bipolar transistors (DHBTs) which take advantage of the staggered (“type II”) band lineup at InP/GaAs0.51Sb0.49 interfaces: in this system the GaAs0.51Sb0.49 base conduction band edge lies ~0.18 eV above the InP collector conduction band, thus enabling the implementation of InP collectors free of the current blocking effect encountered in conventional Ga0.47In0.53As base DHBTs. The structure results in very low collector current offset voltages, low emitter-base turn-on voltages, and very nearly ideal base and collector current characteristics with junction ideality factors of nB=1.05 and nc=1.00. InP/GaAs0.51Sb0.49/InP DHBTs appear well-suited to low-power applications, but can also be used in power applications by virtue of their InP collector. The symmetry of the transistor band structure also lends itself to the potential integration of collector-up and emitter-up devices  相似文献   

8.
Metal-oxide-high-kappa dielectric-oxide-silicon capacitors and transistors are fabricated using HfO2 and Dy2O3 high-kappa dielectrics as the charge storage layer. The programming speed of Al/SiO2/Dy2O3/ SiO2/Si transistor is characterized by a DeltaV th shift of 1.0 V with a programming voltage of 12 V applied for 10 ms. As for retention properties, the Al/SiO2/Dy2O3/ SiO2/Si transistors can keep a DeltaV th window of 0.5 V for 2 times108 s. The corresponding numbers for Al/ SiO2/HfO2/SiO2/Si transistors are 100 ms and 2 times104 s, respectively. The better performance of the Al/SiO2/Dy2O3/ SiO2/Si transistors is attributed to the larger conduction band offset at the Dy2O3/SiO2 interface.  相似文献   

9.
The work function of TiB2 was measured using Fowler-Nordheim tunneling in MOS capacitors, Schottky diode current measurements, capacitance-voltage techniques, and contact resistance. The resulting data place the Fermi level of TiB2 about 0.9 eV below the silicon conduction band. Given this barrier height, Schottky diodes of TiB2/p-Si exhibit ohmic characteristics, but the contact resistance of TiB2 to n+ junctions is an order of magnitude higher than the generally desired value. Boron outdiffusion from TiB2 into underlying silicon was observed at temperatures of 1000°C and greater. Boron diffusion from TiB2 into silicon above 1000°C is enhanced compared to the conventionally accepted value of the boron diffusivity  相似文献   

10.
Transient charging and discharging of border traps in the dual-layer HfO2/SiO2 high-kappa gate stack have been extensively studied by the low-frequency charge pumping method with various input pulse waveforms. It has been demonstrated that the exchange of charge carriers mainly occurs through the direct tunneling between the Si conduction band states and border traps in the HfO2 high-kappa dielectric within the transient charging and discharging stages in one pulse cycle. Moreover, the transient charging and discharging behaviors could be observed in the time scale of 10-8- 10-4 s and well described by the charge trapping/detrapping model with dispersive capture/emission time constants used in static positive bias stress. Finally, the frequency and voltage dependencies of the border trap area density could also be transformed into the spatial and energetic distribution of border traps as a smoothed 3-D mesh profiling  相似文献   

11.
In this letter, fluorine ion implantation with low- temperature solid-phase crystallized activation scheme is used to obtain a high-performance HfO2 low-temperature poly-Si thin- film transistor (LTPS-TFT) for the first time. The secondary ion mass spectrometer (SIMS) analysis shows a different fluorine profile compared to that annealed at high temperature. About one order current reduction of Imin is achieved because 25% grain- boundary traps are passivated by fluorine implantation. In addition, the threshold voltage instability of hot carrier stress is also improved with the introduction of fluorine. The LTPS-TFT with HfO2 gate dielectric and fluorine preimplantation can simultaneously achieve low VTH ~ 1.32 V, excellent subthreshold swing ~0.141 V/dec, and high ION/Imin current ratio ~1.98 times 107.  相似文献   

12.
N-channel metal oxide semiconductor field effect transistors with Ta2O5 gate dielectric were fabricated. The Ta2O5/silicon barrier height was calculated using both the lucky electron model and the thermionic emission model. Based on the lucky electron model, a barrier height of 0.77 eV was extracted from the slope of the ln(Ig/Id) versus ln(Isub/Id) plot using an impact ionization energy of 1.3 eV. Due to the low barrier height, the application of Ta2 O5 gate dielectric transistors is limited to low supply voltage preferably less than 2.0 V  相似文献   

13.
Electrical and reliability properties of ultrathin HfO2 have been investigated. Pt electroded MOS capacitors with HfO2 gate dielectric (physical thickness ~45-135 Å and equivalent oxide thickness ~13.5-25 Å) were fabricated. HfO2 was deposited using reactive sputtering of a Hf target with O2 modulation technique. The leakage current of the 45 Å HfO2 sample was about 1×10-4 A/cm 2 at +1.0 V with a breakdown field ~8.5 MV/cm. Hysteresis was <100 mV after 500°C annealing in N2 ambient and there was no significant frequency dispersion of capacitance (<1%/dec.). It was also found that HfO2 exhibits negligible charge trapping and excellent TDDB characteristics with more than ten years lifetime even at VDD=2.0 V  相似文献   

14.
Temperature-dependent current-voltage measurement was employed to study the band offsets of the In0.30Ga0.70As/In 0.29Al0.71As heterojunction. The conduction band discontinuity was determined to be 0.71±0.05 eV which corresponds to a conduction band offset to bandgap difference ratio ~0.66. The comparison between experimental and theoretical results is presented  相似文献   

15.
热退火技术是集成电路制造过程中用来改善材料性能的重要手段。系统分析了两种不同的退火条件(氨气氛围和氧气氛围)对TiN/HfO2/SiO2/Si结构中电荷分布的影响,给出了不同退火条件下SiO2/Si和HfO2/SiO2界面的界面电荷密度、HfO2的体电荷密度以及HfO2/SiO2界面的界面偶极子的数值。研究结果表明,在氨气和氧气氛围中退火会使HfO2/SiO2界面的界面电荷密度减小、界面偶极子增加,而SiO2/Si界面的界面电荷密度几乎不受退火影响。最后研究了不同退火氛围对电容平带电压的影响,发现两种不同的退火条件都会导致TiN/HfO2/SiO2/Si电容结构平带电压的正向漂移,基于退火对其电荷分布的影响研究,此正向漂移主要来源于退火导致的HfO2/SiO2界面的界面偶极子的增加。  相似文献   

16.
Compressively strained Ge long channel ring-type pMOSFETs with high-kappa Si/SiO2/HfO2/TiN gate stacks are fabricated on Si0.2Ge0.8 virtual substrates. Effective oxide thickness is approximately 1.4 nm with low gate leakage current. A peak hole mobility of 640 cm2/ Vldrs and up to a four times enhancement over the Si/SiO2 universal curve are observed. Parasitic conduction within the Si-cap layers degrades the mobility at large vertical fields, although up to a 2.5 times enhancement over universal remains at a field of 0.9 MV/cm.  相似文献   

17.
The electrical properties of p- and n-MOS devices fabricated on germanium with metal-organic chemical-vapor-deposition HfO2 as gate dielectric and silicon passivation (SP) as surface treatment are extensively investigated. Surface treatment prior to high-K deposition is critical to achieve small gate leakage currents as well as small equivalent oxide thicknesses. The SP provides improved interface quality compared to the treatment of surface nitridation, particularly for the gate stacks on p-type substrate. Both Ge p- and n-MOSFETs with HfO2 gate dielectrics are demonstrated with SP. The measured hole mobility is 82% higher than that of the universal SiO2/Si system at high electric field (~0.6 MV/cm), and about 61% improvement in peak electron mobility of Ge n-channel MOSFET over the CVD HfO2 /Si system was achieved. Finally, bias temperature-instability (BTI) degradation of Ge MOSFETs is characterized in comparison with the silicon control devices. Less negative BTI degradation is observed in the Ge SP p-MOSFET than the silicon control devices due to the larger valence-band offset, while larger positive BTI degradation in the Ge SP n-MOSFET than the silicon control is characterized probably due to the low-processing temperature during the device fabrication  相似文献   

18.
N-channel metal oxide semiconductor field effect transistors (MOSFETs) with Ta2O5 gate dielectric were fabricated. An intrinsic Ta2O5/silicon barrier height of 0.51 eV was extracted from the gate current. The effective Ta 2O5/silicon barrier height including image force barrier lowering is about 0.37 eV with drain to source voltage VDS ranging from 1.5 V to 4.0 V. Due to the low barrier height, negative transconductance effect was observed in the linear region. The decrease of drain current is due to the real space transfer of electrons from the drain terminal to the gate electrode  相似文献   

19.
We report MOCVD-grown NpN InP/GaAsSb/InP abrupt double heterojunction bipolar transistors (DHBTs) with simultaneous values of f T and fMAX as high as 300 GHz for JC=410 kA/cm2 at VCE=1.8 V. The devices maintain outstanding dynamic performances over a wide range of biases including the saturation mode. In this material system the p+ GaAsSb base conduction band edge lies 0.10-0.15 eV above the InP collector conduction band, thus favoring the use of nongraded base-collector designs without the current blocking effect found in conventional InP/GaInAs-based DHBTs. The 2000 Å InP collector provides good breakdown voltages of BVCEO=6 V and a small collector signal delay of ~0.23 ps. Thinner 1500 Å collectors allow operation at still higher currents with fT>200 GHz at JC=650 kA/cm2  相似文献   

20.
Metal-insulator-metal (MIM) capacitors with a 56 nm thick HfO2 high-κ dielectric film have been fabricated and demonstrated for the first of time with a low thermal budget (~200°C). Voltage linearity, temperature coefficients of capacitance, and electrical properties are all characterized. The results show that the HfO2 MIM capacitor can provide a higher capacitance density than Si3N4 MIM capacitor while still maintaining comparable voltage and temperature coefficients of capacitance. In addition, a low leakage current of 2×10-9 A/cm2 at 3 V is achieved. All of these make the HfO 2 MIM capacitor to be very suitable for use in silicon RF and mixed signal IC applications  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号