首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peer-to-peer collaboration paradigms fundamentally change the passive way wireless stations currently adapt their transmission strategies to match available resources, by enabling them to proactively influence system dynamics through exchange of information and resources. In this paper, we focus on delay-sensitive multimedia transmission among multiple peers over wireless multi-hop enterprise mesh networks. We propose a distributed and efficient framework for resource exchanges that enables peers to collaboratively distribute available wireless resources among themselves based on their quality of service requirements, the underlying channel conditions, and network topology. The resource exchanges are enabled by the scalable coding of the video content and the design of cross-layer optimization strategies, which allow efficient adaptation to varying channel conditions and available resources. We compare our designed low complexity distributed resource exchange algorithms against an optimal centralized resource management scheme and show how their performance varies with the level of collaboration among the peers. We measure system utility in terms of the multimedia quality and show that collaborative approaches achieve ~50% improvement over non-collaborative approaches. Additionally, our distributed algorithms perform within 10% system utility of a centralized optimal resource management scheme. Finally, we observe 2-5 dB improvement in decoded PSNR for each peer due to the deployed cross-layer strategy  相似文献   

2.
Dynamic resource allocation being a computationally difficult problem, static spectrum management is more commonly used in large-scale networks. The combination of virtualization technologies, where powerful centralized allocation algorithms can be implemented, and recent advances in graph coloring algorithms prompts the revisiting of this view. We describe a new graph based framework to maximize the number of simultaneously communicating mobiles in a wireless network. Since the considered problem is NP-hard, we propose various heuristic algorithms and analyze their performance, in comparison with standard decentralized channel assignment strategies such as Fractional Frequency Reuse (FFR). We consider the LTE uplink and downlink with the WINNER channel as the reference model. We show that for blocking probabilities below 2%, our scheme typically increases the number of mobile users by 25%. For example with 25 base stations and 120 channels, running the resource allocation scheme takes one second on a PC and permits to increase the number of mobiles requiring one single channel each from 750 to 950, a 25% increase in efficiency compared to FFR.  相似文献   

3.
Because of random deployment patterns of femtocells, interference scenarios in a heterogeneous cellular network can be very complicated because of its changing network topology. Especially when each eNodeB occupies a fixed bandwidth, interference management becomes much more difficult. The benefit of dynamic management for local resource optimation is limited. Recently, resource virtualization has been proposed as a dynamic resource management scheme to optimize network performance. In fact, resource virtualization is viewed as a more flexible model, in which mobile network service providers can control physical resources in a global scope. This paper presents a joint resource virtualization and allocation scheme for its applications in heterogeneous macro‐femto‐cellular networks. The proposed scheme involves two major processes. First, it virtualizes physical resources as logical resources. Second, it carries out logical resource allocation optimization globally and aggregates logical and physical resources for resource allocation. The proposed scheme takes into account spectrum reuse and frequency domain interference jointly in order to achieve a high spectral efficiency and provide rate‐on‐demand services to all users. Simulation results demonstrate the effectiveness of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Users in Peer-to-Peer (P2P) networks tend to exploit the maximum resources they are able to obtain, offering minimum resources in response. This behavior undermines the goal of P2P systems in spreading files through the network and imposes the concept of free-riding. In this paper we propose a Lottery-based pricing mechanism to enhance the sharing level in P2P networks and help increase the number of objects disseminated. The scheme is an extension of the traditional micropayment mechanism. Our scheme provides higher payoff for peers who contribute to the P2P network and higher cost for peers who act selfishly and choose not to share resources. We present simulation results to demonstrate the performance of the proposed mechanism.  相似文献   

5.
In a heterogeneous wireless environment, a variety of Radio Access Technologies (RATs) coexist. Since the number of RATs is anticipated to increase in the near future, it is desirable to have radio and network resources managed in a cooperative manner using the Common Radio Resource Management (CRRM) strategy. In order to make RAT-specific radio resources manageable in CRRM, this paper proposes the Analytical Hierarchy Process (AHP) based resource management scheme that efficiently allocates resources among heterogeneous wireless networks. The proposed AHP-based method is simple and flexible enough to be used in any network environment and can consider a multitude of decision factors. In addition, the proposed scheme uses a radio bandwidth model, which properly reflects transmission rates under given channel conditions, as the actual radio resources to be allocated. The model considers the AMC (Adaptive Modulation and Coding) scheme that is widely used in current broadband wireless access technologies, and thus, packet service characteristics, such as response time, can be analyzed. This is in contrast to existing work that focuses only on circuit service characteristics (e.g., blocking probability). The effectiveness and flexibility of the proposed method are demonstrated by implementing a number of existing methods and performing extensive simulation study on several different scenarios.  相似文献   

6.
This work addresses the radio resource allocation problem for cooperative relay assisted OFDMA wireless network. The relays adopt the decode-and-forward protocol and can cooperatively assist the transmission from source to destination. Recent works on the subject have mainly considered symmetric source-to-relay and relay-to-destination resource allocations, which limits the achievable gains through relaying. In this paper we consider the problem of asymmetric radio resource allocation, where the objective is to maximize the system throughput of the source-to-destination link under various constraints. In particular, we consider optimization of the set of cooperative relays and link asymmetries together with subcarrier and power allocation. We derive theoretical expressions for the solutions and illustrate them through simulations. The results show clear additional performance gains through asymmetric cooperative scheme compared to the other recently proposed resource allocation schemes.  相似文献   

7.
本文提出了一种在ATM网络中传输综合业务的资源共享方案,该方案中,每一VP只传输一类业务,并根据各业务的带宽,各VP传输的业务量和链路的剩余带宽动态分配各个VP占用的宽带,在保证各类业务呼损率的前提下,可获得提高传输效率和降低节点归一化处理负荷的良好折衷。本文还引入了迟滞和资源预留两个概念,并分析了它们对呼损率和节点的归一化处理负荷的影响,最后给出了详细的理论分析和计算机模拟结果。  相似文献   

8.
Scalable routing strategies for ad hoc wireless networks   总被引:17,自引:0,他引:17  
We consider a large population of mobile stations that are interconnected by a multihop wireless network. The applications of this wireless infrastructure range from ad hoc networking (e.g., collaborative, distributed computing) to disaster recovery (e.g., fire, flood, earthquake), law enforcement (e.g., crowd control, search-and-rescue), and military (automated battlefield). Key characteristics of this system are the large number of users, their mobility, and the need to operate without the support of a fixed (wired or wireless) infrastructure. The last feature sets this system apart from existing cellular systems and in fact makes its design much more challenging. In this environment, we investigate routing strategies that scale well to large populations and can handle mobility. In addition, we address the need to support multimedia communications, with low latency requirements for interactive traffic and quality-of-service (QoS) support for real-time streams (voice/video). In the wireless routing area, several schemes have already been proposed and implemented (e.g., hierarchical routing, on-demand routing, etc.). We introduce two new schemes-fisheye state routing (FSR) and hierarchical state routing (HSR)-which offer some competitive advantages over the existing schemes. We compare the performance of existing and proposed schemes via simulation  相似文献   

9.
This article proposes a cooperative relaying strategy to efficiently utilize the relaying resources of Internet service providers (ISPs), speedup distribution and save server bandwidth costs. ISPs cooperatively relay for each other, and peers assist in distributing and fetching the content as near as possible. Base on the fluid model, a constrained model is derived to get optimized global distribution performance in the channel-based system with limited relaying resources. The multi-objectives of the model are minimizing the average distribution time and the distribution time of the slowest channel. Genetic algorithm (GA) is designed to solve the optimization problem. The relaying strategy based on GA can be run periodically to update the allocation policy of ISPs. The distribution performance of the relaying strategy is analyzed in the experiments and results show that GA can provide proper solutions for various network topologies.  相似文献   

10.
In cellular networks, the implementation of various resource management processes, such as bandwidth reservation and location updates, has been based on the one‐to‐one resource management information exchange paradigm, between the mobile nodes and the base stations. In this paper, we design and demonstrate the use of a distributed cooperative scheme that can be applied in the future wireless networks to improve the energy consumption for the routine management processes of mobile terminals, by adopting the peer‐to‐peer communication concept of wireless ad hoc networks. In our approach, the network is subdivided into one‐hop ad hoc clusters where the members of each cluster cooperate to perform the required management functions, and conventional individual direct report transmissions of the mobile terminals to the base stations are replaced by two‐hop transmissions. The performance evaluation and the corresponding numerical results presented in this paper confirm that our proposed scheme reduces significantly the overall system energy consumption when compared with the conventional one‐to‐one direct information management exchange approach. Furthermore the issue of fairness in dynamically selecting the various cluster heads in successive operational cycles of the proposed scheme is analyzed, and an enhanced algorithm is proposed and evaluated, which improves significantly the cluster head selection fairness, in order to balance the energy consumption among the various mobile terminals. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
基于图染色理论提出了2种无线网络中的无线资源共享算法C_TDRS和S_TDGRS.这2种算法分别从子信道和业务流角度考虑,以尽力满足业务需求为目标,兼顾了业务类型和资源共享的公平性.仿真结果表明,2种算法的共享结果在系统吞吐率和比例公平方面比现有算法更接近最优值,并且S_TDGRS算法对2个指标有很好的折衷.  相似文献   

12.
This paper studies the problem of effective resource allocation for multi-radio access technologies (Multi-RAT) nodes in heterogeneous cognitive wireless networks (HCWNs). End-to-end utility, which is defined as the delay of end-to-end communication, is taken into account in this paper. In the scenario of HCWNs, it is assumed that the cognitive radio nodes have the ability of Multi-RAT and can communicate with each other through different paths simultaneously by splitting the arrival packets. In this paper, the problem is formulated as the optimization of split ratio and power allocation of the source cognitive radio node to minimize the delay of end-to-end communication, and a low complexity step-by-step iterative algorithm is proposed. Numerical results show good performance of the proposed algorithm over two other conventional algorithms.  相似文献   

13.
The last years have been characterized by an increasing interest in the grid and cloud computing that allow the implementation of high performance computing structures in a distributed way by exploiting multiple processing resources. The presence of mobile terminals has extended the paradigm to the so called pervasive grid networks, where multiple heterogeneous devices are interconnected to form a distributed computing resource. In such a scenario, there is the need of efficient techniques for providing reliable wireless connections among network nodes. This paper deals with the proposal of a suitable resource management scheme relying on a routing algorithm able to perform jointly the resource discovery and task scheduling for implementing an efficient pervasive grid infrastructure in a wireless ad hoc scenario. The proposed solutions have been considered within two different parallelization processing schemes, and their effectiveness has been verified by resorting to computer simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
异构传感器网络是一种能量有限且分布不均衡的网络,负载均衡和能量有效是此网络路由算法的一个挑战。现提出的自组织成簇算法能够有效增加传感器网络的稳定周期,算法基于传感器节点的剩余能量和通讯能耗选择适合的簇头节点。与经典的成簇算法LEACH和SET比较,本算法能够更好实现负载均衡,并极大地提高传感器网络的稳定周期。  相似文献   

15.
Scalable geographic routing algorithms for wireless ad hoc networks   总被引:1,自引:0,他引:1  
Frey  H. 《IEEE network》2004,18(4):18-22
The design of efficient routing protocols for dynamical changing network topologies is a crucial part of building power-efficient and scalable ad hoc wireless networks. If position information is available due to GPS or some kind of relative positioning technique, a promising approach is given by geographic routing algorithms, where each forwarding decision is based on the positions of current, destination, and possible candidate nodes in vicinity only. About 15 years ago heuristic greedy algorithms were proposed, which in order to provide freedom from loops might fail even if there is a path from source to destination. In recent years planar graph traversal has been investigated as one possible strategy to recover from such greedy routing failures. This article provides a tutorial for this class of geographic routing algorithms, and discusses recent improvements to both greedy forwarding and routing in planar graphs.  相似文献   

16.
The coexistence of femtocell and WiFi networks in a heterogeneous spectrum environment with licensed and unlicensed bands will support multi-mode femtocell users (FUs) to simultaneously transmit on both licensed and unlicensed bands. The efficient integration of both femtocell and WiFi technologies is seen as crucial for supporting the offloading of femtocell traffic to WiFi networks. To successfully deploy these integrated technologies, the overall licensed and unlicensed spectrum usage must be efficiently managed. Thus, we propose a new cognitive-based connection-level admission control with access retrial for a femtocell network that operates under a mixed spectrum of unlicensed and licensed bands. By deploying cognitive radio concepts, the FUs will utilize the unused spectrum of the existing unlicensed spectrum of the WiFi network in an opportunistic manner in addition to using the licensed spectrum. By using the retrial phenomenon policy, the blocked FUs can retry the access, which can reduce their loss probability. An analytical model using a three-dimensional continuous time Markov chain with a level-dependent quasi birth-and-death structure was developed to evaluate and study the performance of the proposed scheme. The matrix analytic method was used to obtain the steady state probability and performance measures. The result shows that the performance of FUs for integrated femtocell-WiFi networks using the proposed scheme significantly improved in terms of FUs throughput and loss probability. The results also show that the retrial phenomenon of FUs enhances their performance.  相似文献   

17.
An efficient radio resource allocation scheme is crucial for guaranteeing the quality of service (QoS) requirements and fully utilizing the scarce radio resources in wireless mobile networks. Most of previous studies of radio resource allocation in traditional wireless networks concentrates on network layer connection blocking probability QoS. In this paper, we show that physical layer techniques and QoS have significant impacts on network layer QoS. We use a concept of cross-layer effective bandwidth to measure the unified radio resource usage taking into account both physical layer linear minimum-mean square error (LMMSE) receivers and varying statistical characteristics of the packet traffic in code devision multiple access (CDMA) networks. We demonstrate the similarity between traditional circuit-switched networks and packet CDMA networks, which enables rich theories developed in traditional wireless mobile networks to be used in packet CDMA networks. Moreover, since both physical layer signal-to-interference ratio (SIR) QoS and network layer connection blocking probability QoS are considered simultaneously, we can explore the tradeoff between physical layer QoS and network layer QoS in packet CDMA networks. This work is supported by Natural Science and Engineering Research Council of Canada. Please address all correspondence to Professor Vikram Krishnamurthy at the above address. Fei Yu received the Ph.D. degree in electrical engineering from the University of British Columbia in 2003. From 2002 to 2004, he was with Ericsson (in Lund, Sweden), where he worked on the research and development of dual mode UMTS/GPRS handsets. From 2005, he has been working in Silicon Valley at a start-up, where he conducts research and development in the areas of advanced wireless communication technologies and new standards. After completing the PhD, he has been a research associate in the Department of Electrical and Computer Engineering at the University of British Columbia. His research interests include cross-layer optimization, QoS provisioning and security in wireless networks. Vikram Krishnamurthy (S’90-M’91-SM’99-F’05) was born in 1966. He received his bachelor’s degree from the University of Auckland, New Zealand in 1988, and Ph.D. from the Australian National University, Canberra, in 1992. Since 2002, he has been a professor and Canada Research Chair at the Department of Electrical Engineering, University of British Columbia, Vancouver, Canada. Prior to this he was a chaired professor at the Department of Electrical and Electronic Engineering, University of Melbourne, Australia. His research interests span several areas including ion channels and nanobiology, stochastic scheduling and control, statistical signal processing and wireless telecommunications. Dr. Krishnamurthy has served as associate editor for IEEE Transactions on Signal Processing, IEEE Transactions Aerospace and Electronic Systems, IEEE Transactions Nanobioscience, IEEE Transactions Circuits and Systems II, Systems and Control Letters and European Journal of Applied Signal Processing. He was guest editor of a special issue of IEEE Transactions on NanoBioScience, March 2005 on bio-nanotubes.  相似文献   

18.
Currently, multimedia is urgently expected in wireless networks. One of the most important and complicated issues is quality of service guarantees in third-generation wireless networks. The purpose of this article is to propose a probabilistic resource estimation and semi-reservation scheme in considering the probability of real usage made by the mobile host. This scheme can efficiently improve the connection blocking probability, connection dropping probability, and bandwidth utilization  相似文献   

19.
文章首先分析了传统对等(Peer-to-Peer,P2P)网络模型存在的优缺点,并在此基础上提出一种改进的P2P网络模型,如丢弃已见过的消息、原路返回应答消息和设置广播的半径等.同时,对网络模型中的节点管理功能模块、资源搜索功能模块和下载管理功能模块等做了较详细的介绍;文章作者在此基础上,设计、开发了一种基于P2P的网络管理系统(NMS).  相似文献   

20.
We propose a framework for network-assisted radio resource management in wireless data networks. This type of radio resource management techniques offer implementation and capacity benefits compared to conventional, interference-measurement based, dynamic channel assignment (DCA) algorithms. The basic idea is to use interbase signaling to shift most of the burden of the resource allocation from the air interface to the backbone infrastructure. By exchanging channel assignment as well as other relevant information in real time through the backbone network, each base can calculate the impact of a resource assignment on the system. As a result, rapid interference measurements, which are typically needed to implement DCA schemes, are replaced by a limited amount of path loss measurements and the computation of interference conditions by the base stations. This significantly reduces the measurement and over-the-air signaling requirements, and can also provide an opportunity for a better optimization of the system performance. We focus on two specific algorithms: network-assisted least-interference-based dynamic packet assignment (NA-LI-DPA) and network-assisted dynamic packet assignment with throughput optimization (NA-DPA). NA-LI-DPA closely resembles a least-interference-based dynamic channel assignment algorithm, and NA-DPA attempts to further improve the overall system throughput. The algorithms, as defined, are appropriate for a best-effort data service, where the primary goal is to provide a higher throughput. However, it will be clear from the discussion that it is also feasible to alter the algorithms to optimize performance metrics other than throughput, e.g., to ensure a certain quality of service. We show through simulation that, for a system like enhanced general packet radio service (EGPRS) system, NA-DPA can provide a throughput that is 50% higher than random packet assignment, and 25% higher than that obtained by conventional DCA algorithms  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号