首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
将含粉末活性炭(PAC)的沉淀池排泥水回流至原水进水处,延长PAC在系统中的停留时间,考察系统对氨氮、有机物和浊度的去除效果及去除氨氮的影响因素.结果表明,在温度为21~25℃,投炭量为50 mg/L条件下,系统第7~8天运行稳定,对氨氮、UV254和CODMn的去除率分别为40%、45%和60%左右,出水浊度在1 NTU左右,活性炭泥的生物量为130 nmolP/g左右.当活性炭泥回流比为6%,原水CODMn不超过10 mg/L,Ph为7~8,浊度不超过180 NTU时,对氨氮去除效果最好,为40%~50%,可应对原水氨氮浓度小于1 mg/L的情况.  相似文献   

2.
垃圾渗滤液的磷酸铵镁沉淀法预处理技术研究   总被引:17,自引:0,他引:17  
研究了磷酸铵镁沉淀法 (MAP)去除氨氮、COD以及难降解有机物的效果。试验结果表明 ,在投加药剂Mg∶N∶P摩尔比为 1∶1∶0 7,pH 9~ 9 5的条件下 ,垃圾渗滤液氨氮的去除率在 70 %左右 ,COD的去除率为 10 %~ 2 0 % ,而难降解有机物的去除率达到了 4 0 %~ 5 0 % (以UV2 6 0 表征 )。并且经MAP法处理后垃圾渗滤液的可生化性也得到了一定的改善 ,UV2 6 0 /COD值从 9 1× 10 - 4降低到 (6 1~ 6 5 )× 10 - 4。  相似文献   

3.
A/O工艺处理含海水污水的中试研究   总被引:4,自引:0,他引:4  
采用A/O工艺对含海水城市污水生物处理进行了中试研究。试验结果表明:在常温条件下,进水CODCr为300-500 mg/L,氨氮为40-70 mg/L,当污水中海水比例小于30%时(污水盐度为10.5 g/L),盐度对有机物及氨氮去除率均无影响;当污水中海水比例大于50%(污水盐度为17.5 g/L)时,有机物去除率下降而氨氮去除率无变化;当污水中海水比例大于70%(污水盐度为24.5g/L)时,有机物及氨氮去除率均明显下降。说明污水中盐度对氨氮去除率的影响小于对有机物去除率的影响,污水中盐度对硝化过程自养菌的影响要小于对有机物降解过程异养菌的影响。  相似文献   

4.
李日强  毕翀宇  王鹏 《给水排水》2006,32(Z1):171-173
采用两级SBR工艺对顺酐和富马酸生产废水进行了处理,考察了污泥浓度、反应时间对处理效果的影响以及反应过程中pH的变化规律.结果表明,MLSS为5.9 g/L比MLSS为11.2 g/L的处理效果好.当进水CODCr为6 300 mg/L,BOD5为4 715 mg/L,NH3-N为369 mg/L,试验在充水1 h、沉淀2 h、闲置3 h、非限量曝气、一级SBR(MLSS为5.9 g/L)反应时间10 h、二级SBR (MLSS为4.1 g/L)反应18 h条件下时,出水中CODCr为648 mg/L、去除率为89.7%,BOD5为85 mg/L、去除率为98.2%,NH3-N为20 mg/L、去除率为94.6%.pH随CODCr的降低而升高,当CODCr的降低幅度趋缓时,pH的升高幅度也随着趋缓.  相似文献   

5.
以城市污水处理厂污泥回流液为研究对象,研究生物流化床法降低污泥回流液中氮磷浓度的效果,并分析了COD/TN与COD/TP值对生物流化床脱氮除磷的影响.结果表明,COD_(Cr)浓度对脱氮影响不大,而对除磷有较大影响.在COD_(Cr)为500 mg/L,进水TN为115 mg/L时,TN的去除率最大为72.05%,此时,COD/TN值为4.35.在COD_(Cr)为480 mg/L,进水TP为11.25 mg/L时,TP的去除率最高为36.98%,此时COD/TP为42.67.生物流化床法对降低高浓度氮磷污泥回流液具有一定的去除效果,TN去除率可达56.35%,TP去除率为28.96%.  相似文献   

6.
以浸渍法制备用于常温常压微波催化氧化工艺的负载型Fe-O/CeO_2催化剂并通过XRD和SEM手段进行表征;利用优化制备后的催化剂进行微波催化氧化垃圾渗滤液的研究.结果表明:Fe-O/CeO_2催化剂中活性组分Fe以α-Fe_2O_3和CeFe_2的形式存在.在渗滤液初始COD_(Cr)5 736 mg/L、氨氮1 840 mg/L、色度500倍和pH 8.69的条件下,在Fe-O/CeO_2投加量10 g/L、H_2O_2(30%)投加量22.5 mL/L、微波功率800 W、微波辐射时间10 min和水样初始浓度C_(水样)/C_(原水)为100%的最佳运行条件下,微波催化氧化工艺对COD_(Cr)、氨氮和色度的去除率分别为73%、78%和85%;在反应的第4~8 min和第2~8 min,COD_(Cr)和氨氮去除率分别与反应时间呈近似直线的关系.  相似文献   

7.
酸化-内电解-Fenton-混凝法处理钻井废水   总被引:3,自引:0,他引:3  
采用酸化-内电解-Fenton试剂-混凝法对气田钻井废水进行研究,得出最佳工艺条件为:酸化段pH 2,反应时间30 min;铁炭内电解段铁炭比(体积)1∶1,pH 2,反应时间2 h;Fenton段H_2O_2加量4 mL/L,pH 3,反应时间2.5 h;混凝段PAM加量15 mg/L,pH 9,反应时间30 min;在最佳条件下,COD_(cr)去除率达到99.3%,悬浮物去除率为99.8%,油的去除率为99.7%,色度的去除率为99.8%.利用实验结果实地处理原井场和另外相邻两口井的钻井废水,处理后出水达<污水综合排放标准>(GB 8978-1996)一级标准.  相似文献   

8.
UBAF预处理微污染水实验研究   总被引:1,自引:0,他引:1  
利用上向流曝气生物滤池(UBAF)对微污染水预处理进行研究。研究表明:UBAF对微污染水的预处理有良好的效果;在水力停留时间为30min,气水比为1∶1,水温在20~30℃条件下,当进水氨氮为5.5~12mg/L时,UBAF对氨氮的去除率为80%~85%;对亚硝酸盐氮的去除率为80%左右;当进水CODMn的浓度为4.5~13.5mg/L时,UBAF对CODMn的去除率达到40%;提高流速,将水力停留时间由30min降至20min时,UBAF对氨氮的去除率由87.7%降至79.5%。  相似文献   

9.
固定化硝化细菌去除氨氮和气相氨的试验研究   总被引:3,自引:0,他引:3  
以聚乙烯醇和海藻酸钠作为复合包埋载体,以氯化钙和硼酸溶液作为交联剂,固定巨大芽孢杆菌TN-1(Bacillus megaterium),制备得固定化球形颗粒.考察了不同接种量、活化时间及氨氮初始浓度条件下,固定化硝化菌对氨氮的去除效果及其与游离硝化菌的比较,并对实际生活污水的氨氮和化粪池散发的NH_3去除率进行了测定.结果表明:聚乙烯醇、海藻酸钠、氯化钙和硼酸质量分数分别为10%、0.8%、2%和5.3%,固定化时间为24 h,4 ℃充分交联;在常温(30±2) ℃、转速为150 r/min的条件下,处理pH 7.0、NH_3-N为88 mg/L的试验水样24 h,氨氮去除率为96.2%,同样条件下处理氨氮浓度为54 mg/L的实际生活污水24 h,氨氮去除率为80.6%;试验设计范围内,接种量对氨氮去除效果影响不大,去除率均在88%以上,最佳活化时间是24 h,去除率随氨氮初始浓度的增加而逐渐降低;BAF试验装置中固定化菌对氨氮和NH_3的去除率分别为84.6%和94.4%.  相似文献   

10.
采用烧杯试验考察了常规混凝、预加石灰乳混凝以及硫化钠沉淀联合强化混凝对模拟突发性汞污染原水中汞的去除效果。通过硫化钠投加量、pH、2种混凝剂和3种助凝剂及其投加量对除汞效果的影响试验,优化了硫化钠沉淀联合强化混凝法除汞。结果表明,常规混凝汞去除率为23.5%~31.8%;预加石灰乳混凝的汞去除率为32.8%~79.8%;硫化钠沉淀联合强化混凝的除汞效果最好,平均去除率大于90%。硫化钠的最佳投量比为1∶2(Hg2 ∶Na2S.9H2O),在过量200%以下出水硫离子均不超标。pH在8以上可确保硫化钠充分发挥作用。PAC最佳投加量为20mg/L,PAM最佳投加量为0.1mg/L。为期30天规模为4m3/h的中试验证了优化后的硫化钠沉淀联合强化混凝应急处理方法对不同汞污染程度的原水的除汞效果与小试基本一致。用硫化钠沉淀联合强化混凝应急除汞,在汞超标100倍以下,过滤出水可达标,在汞超标60倍以下,沉淀出水可达标。处理费用为0.02588元/m3。  相似文献   

11.
The degradation of 3,4-dihydroxybenzoic acid (3,4-DHBA) in the presence and absence of Pb(2+) under UV illumination was studied. Addition of Pb(2+) caused the formation of precipitate during photoreaction when the solution pH was higher than 6. The presence of Pb(2+) remarkably inhibited the degradation of 3,4-DHBA and its photodegradation intermediates, while complexation of 3,4-DHBA and its photodegradation intermediates with Pb(2+) decreased the free Pb(2+) in aqueous solutions. Molecular oxygen played an important role in photodegradation of 3,4-DHBA in the presence of Pb(2+). UV-Vis spectroscopy was used to investigate the interaction between Pb(2+) and 3,4-DHBA at different pH conditions, and FT-IR was used to characterize the precipitate formed during photoreaction. The mineralization of 3,4-DHBA was investigate by total organic carbon analysis.  相似文献   

12.
CASS工艺生物脱氮除磷效果分析   总被引:2,自引:0,他引:2  
对CASS工艺脱氮除磷效果进行了试验研究,重点研究了温度和回流比对脱氮效果的影响,曝气量对除磷效果的影响。研究结果表明,水温在30℃时系统脱氮效果最好,此时NH3-N去除率在80%左右,TN去除率在70%左右;污泥回流比为25%、50%、100%和200%时,TN去除率分别为50%、58%、62%和70%,增加回流比可以提高脱氮效率;好氧区DO维持在2mg/L和4 mg/L时,TP去除率分别为82%和37%。  相似文献   

13.
The removal of phosphate as magnesium ammonium phosphate (MAP, struvite) has gained a lot of attention. A novel approach using ureolytic MAP crystallization (pH increase by means of bacterial ureases) has been tested on the anaerobic effluent of a potato processing company in a pilot plant and compared with NuReSys(?) technology (pH increase by means of NaOH). The pilot plant showed a high phosphate removal efficiency of 83 ± 7%, resulting in a final effluent concentration of 13 ± 7 mg · L(-1) PO(4)-P. Calculating the evolution of the saturation index (SI) as a function of the remaining concentrations of Mg(2+), PO(4)-P and NH(4)(+) during precipitation in a batch reactor, resulted in a good estimation of the effluent PO(4)-P concentration of the pilot plant, operating under continuous mode. X-ray diffraction (XRD) analyses confirmed the presence of struvite in the small single crystals observed during experiments. The operational cost for the ureolytic MAP crystallization treating high phosphate concentrations (e.g. 100 mg · L(-1) PO(4)-P) was calculated as 3.9 € kg(-1) P(removed). This work shows that the ureolytic MAP crystallization, in combination with an autotrophic nitrogen removal process, is competitive with the NuReSys(?) technology in terms of operational cost and removal efficiency but further research is necessary to obtain larger crystals.  相似文献   

14.
Struvite crystallization (MgNH(4)PO(4)·6H(2)O, MAP) could be an alternative for the sustainable and economical recovery of phosphorus from concentrated wastewater streams. Struvite precipitation is recommended for those wastewaters which have high orthophosphate concentration. However the presence of a cheap magnesium source is required in order to make the process feasible. For those wastewater treatment plants (WWTP) located near the seashore magnesium could be economically obtained using seawater. However seawater contains calcium ions that could interfere in the process, by promoting the precipitation of amorphous magnesium and calcium phosphates. Precipitates composition was affected by the NH(4)(+)/PO(4)(3-) molar ratio used. Struvite or magnesium and calcium phosphates were obtained when NH(4)(+)/PO(4)(3-) was fixed at 4.7 or 1.0, respectively. This study demonstrates that by manipulating the NH(4)(+)/PO(4)(3-) it is possible to obtain pure struvite crystals, instead of precipitates of amorphous magnesium and calcium phosphates. This was easily performed by using either raw or secondary treated wastewater with different ammonium concentrations.  相似文献   

15.
Experiments have been carried out to get an understanding of the effect of DO, C/N ratio and pH on the performance of a bench scale membrane bioreactor (MBR) in simultaneous nitrification and denitrification. It was found that under the conditions of MLSS in the range of 8000-9000 mg/L and temperature of water in the MBR of 24 degrees C, influent COD and NH3-N in the range of 523-700 mg/L and 17.24-24 mg/L respectively, the removals of COD, NH3-N and TN were 98%, 99% and 60%; 96.5%, 0,98% and 75%; 96%, 95% and 92%; 90%,70% and 60% respectively at DO of 6, 3, 1 and 0.5 mg/L. It was also found that the changes in C/N ratio and pH in a certain range have a slight effect on COD removal but have significant influence on the removal of NH3-N and TN. The results showed that only under the conditions that each ecological factor was maintained relatively steadily, simultaneous nitrification and de-nitrification proceeded smoothly. It was found that when C/N ratio was 30, the influent pH 7.2, the temperature of water in MBR 24 degrees C and DO 1 mg/L, as optimum conditions, the removals of COD, NH3-N and TN were 96%, 95% and 92% respectively. In addition, mechanism research on simultaneous nitrification and de-nitrification in MBR has been conducted as well.  相似文献   

16.
Le C  Liang J  Wu J  Li P  Wang X  Zhu N  Wu P  Yang B 《Water science and technology》2011,64(10):2126-2131
In this study, zero-valent iron (ZVI) was used to pretreat para-chloronitrobenzene (p-CNB), and the major product was para-chloroaniline (p-CAN). By adding H(2)O(2) directly, further p-CAN degradation can be attributed to Fenton oxidation because ferrous ions (Fe(2+)) released during the ZVI corrosion could be used as an activator for H(2)O(2) decomposition. In the reduction process, the reduction efficiency of p-CNB as well as Fe(2+) concentration increased with increasing iron dosage and decreasing solution pH. Under the optimal conditions, 25 mg L(-1) of p-CNB could be transformed in 3 h when initial solution pH was 3.0 and ZVI dosage was 2.0 g L(-1). A sufficient amount of Fe(2+) (50.4 mg L(-1)) was obtained after the above reaction to activate H(2)O(2). In the Fenton process, the oxidization of p-CAN was also more effective in acidic conditions and it increased with increasing H(2)O(2) concentration. The control experiments showed that the sequential treatment was more effective than Fenton oxidation alone in treating p-CNB wastewater since the removal rate of total organic carbon (TOC) was improved by about 34%. It suggested that the amino function group is more susceptible to oxidative radical attack than the nitro function group. Therefore, sequential treatment using zero-valent iron reduction followed by Fenton oxidation is a promising method for p-CNB degradation.  相似文献   

17.
Ammonia recovery from anaerobically digested cattle manure effluents through steam stripping was studied at a stripping tower temperature of 98-99 degrees C and a steam-water ratio approximately 56-72 g/L. The digested manure effluents were first treated by microfiltration and then the permeate was used as feed in steam stripping. The stripping performance was evaluated under different feed pH values, ammonia concentrations and temperatures. The increase of the initial feed pH does not significantly improve ammonia stripping efficiency due to the fact that the stripped effluent pH is increased during steam stripping. This suggests that steam stripping of anaerobically digested manure effluents for ammonia recovery may not need pre-raised pH. In contrast, the pH value of the synthetic ammonia wastewater containing NH4Cl dramatically decreases after steam stripping. Increasing the feed temperature slightly improves ammonia stripping efficiency, but reduces the concentration of the recovered ammonia in the condensate due to an increased condensate volume at a higher feed temperature. Therefore, the feed temperature should be controlled at an optimum point that can compromise the condensate ammonia concentration and the ammonia stripping efficiency. Experimental results indicate that recovery of ammonia from anaerobically digested cattle manure effluents as NH4OH is technically feasible.  相似文献   

18.
为探寻污水厂二级出水深度处理方法,以阜新市某污水处理公司二级出水为研究对象,进行H2O2与沸石联用去除水中COD、氨氮的研究。结果表明:在二氧化锰的催化作用下,pH值为7时,H2O2和沸石的投加量分别为1.5mL和2g,二级出水的COD从138.24mg/L降到52.76mg/L,去除率达到75.36%,NH3-N从20mg/L降到5mg/L,去除率为74.59%,出水有机物和氨氮含量达到国家相关出水标准。  相似文献   

19.
The effects of free ammonia (FA) or free nitrous acid (FNA) on partial nitrification (PN) has been well investigated. Nevertheless, little information was known about the combined effects of nitrogen loading rate (NLR) and substrate inhibition, as well as the impact on the community structure of nitrifiers. In this work, real reject water was treated in a pre-denitrification reactor. PN was achieved by gradually increasing NLR, and it was successfully maintained when average FA and FNA were within 0.8-3.2 mg NH?-N/L and 0.003-0.067 mg HNO?-N/L, respectively. When NLR was reduced, PN was slightly affected due to the FA declination. As FNA inhibition was also eliminated by adding alkalinity into the influent, PN was completely destroyed quickly. FISH results indicated the deterioration of the PN was mainly attributed to the recovery of NOB when inhibition effects were limited. It concluded the increase of NLR benefited the partial nitrification. However, the stability of the nitrite path way was more dependent on selective substrate inhibition effects, especially the FNA inhibition. These findings would be important for further treatment of actual reject water.  相似文献   

20.
A pilot scale experiment was conducted to evaluate the performance of a membrane bioreactor filled with high concentration powdered activated carbon. This hybrid system has great potential to substitute for existing GAC or O3/BAC processes in the drinking water treatment train. The system was installed at a water treatment plant located downstream of the Nakdong river basin, Korea. Effluent of rapid sand filter was used as influent of the system which consists of PAC bio-reactor, submerged MF membrane module and air supply facility. PAC concentration of 20 g/L was maintained at the beginning of the experiment and it was increased to 40 g/L. The PAC has not been changed during the operational periods. The membrane was a hollow fiber type with pore sizes of 0.1 and 0.4 microm. It was apparent that the high PAC concentration could prevent membrane fouling. 40 g/L PAC was more effective to reduce the filtration resistance than 20 g/L. At the flux of 0.36 m/d, TMP was maintained less than 40 kPa for about 3 months by intermittent suction type operation (12 min suction/3 min idling). Adsorption was the dominant role to remove DOC at the initial operational period. However the biological effect was gradually increased after around 3 months operation. Constant DOC removal could be maintained at about 40% without any trouble and then a tremendous reduction of DBPs (HAA5 and THM) higher than 85% was achieved. Full nitrification was observed at the controlled influent ammonia nitrogen concentration of 3 and 7 mg/L. pH was an important parameter to keep stable ammonia oxidation. From almost two years of operation, it is clear that the PAC membrane bioreactor is highly applicable for advanced water treatment under the recent situation of more stringent DBPs regulation in Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号