首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: To determine the relative contribution of cyclooxygenase (COX)-1 and COX-2 in regulating prostaglandin (PG) E2 and PGF2alpha receptors (EP and FP, respectively) densities and their functions in retinal vasculature of neonatal pigs. METHODS: Newborn pigs were treated intravenously every 8 hours for 48 hours with saline, 40 mg/kg nonselective COX inhibitor ibuprofen, 80 mg/kg COX-1 inhibitor valeryl salicylate, or 5 mg/kg DuP697 and 5 mg/kg NS398, COX-2 inhibitors. Retinal microvessel EP and FP receptor densities were measured by radioligand binding and receptor-coupled effects by determining second-messenger inositol 1,4,5-trisphosphate (IP3) and vasomotor responses. Retinal blood flow (RBF) response to incremental increases in blood pressure (BP) was measured by a microsphere technique. RESULTS: Valeryl salicylate, DuP697, and NS398 reduced retinal PGE2 and PGF2alpha concentrations in the newborn by approximately half, whereas ibuprofen caused further reduction to levels observed in adults. Retinal vessel EP1, EP3, and FP receptor densities increased approximately threefold after treatments with COX-1 or COX-2 inhibitors, and five- to sixfold after ibuprofen treatment. EP and FP receptor upregulation was associated with corresponding increases in IP3 production and retinal vasoconstriction in response to PGF2alpha, fenprostalene (an FP agonist), PGE2, 17-phenyl trinor PGE2 (an EP1 agonist), and M&B28,767 (an EP3 agonist) and with enhanced RBF autoregulation of high BP (> or =125 mm Hg). Conversely, EP2 receptor density and coupled functions were minimally affected by COX inhibition. CONCLUSIONS: Data suggest that increased COX-1- and COX-2-catalyzed prostaglandin synthesis contribute equivalently to the downregulation of retinovascular EP1, EP3, and FP receptors and their vasoconstrictor functions in newborn pigs; the EP2 receptor was not significantly influenced by ontogenic alterations in prostaglandin levels.  相似文献   

2.
The present study examined the inhibitory profiles of NS-398 and nimesulide against prostaglandin (PG) formation in inflammatory and non-inflammatory sites, and compared them with those of aspirin and indomethacin. In vitro, indomethacin inhibited PGH synthase (PGHS)-1 and PGHS-2 almost equally, while NS-398 and nimesulide inhibited only PGHS-2. NS-398 (1, 10 mg/kg) and nimesulide (3 mg/kg) slowed the rate of plasma exudation and thus the exudate accumulation in rat carrageenin-induced pleurisy. Aspirin (30, 100 mg/kg) and indomethacin (10 mg/kg) also reduced this rate. NS-398 and nimesulide reduced the PGE2 more potently than TXB2 and 6-keto-PGF1 alpha in the exudate. However, aspirin and indomethacin did not exhibit this selectivity. The levels of PGE2 correlated significantly with the plasma exudation rate. Moreover, nimesulide (3 mg/kg) did not affect PGE2 formation in rat stomachs injected with 1 M NaCl solution, while indomethacin (10 mg/kg) reduced it. Thus, NS-398 and nimesulide exhibit different inhibitory profiles from aspirin and indomethacin against PG formation. These results suggest that PGE2 may be produced by PGHS-2 in the inflammatory site, and may play a more prominent role than PGI2 in plasma exudation.  相似文献   

3.
4.
5.
1. The effects of the non-selective cyclo-oxygenase (COX) inhibitor indomethacin and the selective COX-2 inhibitors, N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulphonamide (NS-398), 5-methanesulphonamido-6-(2,4-difluorothio-phenyl)-1-indan one (L-745,337) and 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl) phenyl-2(5H)-furanone (DFU), on the protection induced by the mild irritant 20% ethanol were investigated in the rat stomach. 2. Instillation of 20% ethanol (1 ml, p.o.) effectively protected against gastric mucosal injury induced by subsequent instillation of 70% or 96% ethanol (1 ml, p.o.). 3. Oral administration of indomethacin (1.25-20 mg kg[-1]) dose-dependently counteracted the protective effect of 20% ethanol (ID50: 3.5 mg kg[-1]). 4. Likewise, NS-398 (0.1-1 mg kg[-1]), L-745,337 (0.2-2 mg kg[-1]) and DFU (0.02-0.2 mg kg[-1]) inhibited the protective effect of 20% ethanol in a dose-dependent manner with ID50 values of 0.3 mg kg(-1), 0.4 mg kg(-1) and 0.06 mg kg(-1), respectively. 5. Inhibition of mild irritant-induced protection was also found when NS-398 (1 mg kg[-1]) was administered s.c. or when 96% ethanol was used to damage the mucosa. 6. Pretreatment with 16,16-dimethyl-prostaglandin (PG)E2 at 4 ng kg(-1), a dose that did not protect against ethanol (70%)-induced mucosal damage when given alone, completely reversed the effect of the selective COX-2 inhibitors on the mild irritant-induced protection. 7. Pretreatment with dexamethasone (3 mg kg(-1), 24 and 2 h before instillation of 20% ethanol) did not affect the protective activity of the mild irritant, indicating that enzyme induction is not involved. 8. Indomethacin (20 mg kg(-1), p.o.) did not prevent the protection conferred by sodium salicylate (100 mg kg[-1]), dimercaprol (30 microg kg[-1]), iodoacetamide (50 mg kg[-1]) and lithium (20 mg kg[-1]). Likewise, the protective effect of these agents was not counteracted by NS-398 (1 mg kg(-1), p.o.). 9. Whereas indomethacin (20 mg kg(-1), p.o.) near-maximally inhibited gastric mucosal formation of PGE2, 6-keto-PGF1alpha and thromboxane (TX) B2 as well as platelet TXB2 release, the selective COX-2 inhibitors were ineffective. 10. The findings show that selective COX-2 inhibitors, although lacking in ulcerogenic activity, prevent the protection conferred by a mild irritant. Prostaglandis generated by a constitutive COX-2 could thus contribute to physiological functions involved in gastric homeostasis, although at present a non-COX-2-related mechanism underlying the effect of the selective COX-2 inhibitors tested on mild irritant-induced protection cannot be completely excluded.  相似文献   

6.
Prostaglandins, which are known to play an important role in the nociceptive transmission in the spinal cord, are produced by cyclooxygenase (COX). Two forms of COX have been identified, COX-1 (constitutive form) and COX-2 (a form highly inducible in response to inflammatory stimuli). COX-2 mRNA was reported to be expressed in the brain in normal rats in the absence of inflammation. We investigated the role of spinal COX-2 in the maintenance of thermal hyperalgesia induced by paw carageenan injection in the rat using NS-398, a selective COX-2 inhibitor. Intrathecally administered NS-398 attenuated the level of thermal hyperalgesia in a dose-dependent manner. This suggested that spinal COX-2 plays an important role in the maintenance of thermal hyperalgesia induced by paw carageenan injection.  相似文献   

7.
Abortion or delivery were induced by extra-amniotic instillation of Rivanol during the second trimester in twelve patients and during the third trimester in two patients with fetal death and one patient with fetal acrania. Serial sampling of amniotic fluid was performed through a transabdominal catheter and the levels of free arachidonic acid (AA), prostaglandin F2 alpha (PGF2 alpha), prostaglandin E2 (PGE2), 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) and thromboxane B2 (TXB2) were determined. The levels of AA, PGF2 alpha, PGE2, 6-keto-PGF1 alpha and TXB2 in amniotic fluid increased significantly during induction with the exception of AA in fetal death which was high and remained constant during induction. Furthermore, PGF2 alpha, 6-keto-PGF1 alpha and TXB2 were all significantly correlated to AA. These observations suggested that free AA is released during Rivanol-induction of abortion and labour giving an increased synthesis of PGF2 alpha, PGE2 prostacyclin and thromboxane A2 in the fetal membranes and the decidua but not in the fetus. This increase might be relevant for the initiation and progress of abortion and labour in these patients.  相似文献   

8.
1. Endotoxaemia is associated with the expression of the inducible isoform of cyclo-oxygenase, cyclo-oxygenase-2 (COX-2), and an overproduction of arachidonic acid (AA) metabolites. The role of the AA metabolites generated by COX-2 in the circulatory failure and multiple organ dysfunction caused by endotoxin is unclear. Dexamethasone prevents the expression of COX-2 and exerts beneficial effects in animal models of shock. 2. Here we compare the effects of two inhibitors of COX-2 activity, namely NS-398 (5 mg kg(-1), i.p., n=7) and SC-58635 (3 mg kg(-1), i.p., n=9) with those of dexamethasone (3 mg kg(-1), i.p., n=9) on the circulatory failure and organ dysfunction caused by lipopolysaccharide (LPS, E. coli, 6 mg kg(-1), i.v., n=11) in the rat. 3. Endotoxaemia for 6 h caused hypotension, acute renal dysfunction, hepatocellular injury, pancreatic injury and an increase in the plasma levels of 6-keto-PGF1alpha (indicator of the induction of COX-2) and nitrite/nitrate (indicator of the induction of iNOS). 4. Pretreatment of rats with dexamethasone attenuated the hypotension, the renal dysfunction, the hepatocellular and pancreatic injury and the induction of COX-2 and iNOS caused by LPS. In contrast, inhibition of COX-2 activity with SC-58635 or NS-398 neither attenuated the circulatory failure nor the multiple organ failure caused by endotoxin. 5. Thus, the prevention of the circulatory failure and the multiple organ injury/dysfunction caused by dexamethasone in the rat is not due to inhibition of the activity of COX-2. Our results suggest that an enhanced formation of eicosanoids by COX-2 does not contribute to the development of organ injury and/or dysfunction in rats with endotoxaemia.  相似文献   

9.
The stimulation of intestinal epithelial cell cyclooxygenase (COX) enzymes with inflammatory agents and the inhibition of COX-1 and COX-2 enzymes has the potential to increase understanding of the role of these enzymes in intestinal inflammation. The aim of this study was to determine the contributions of COX-1 and -2 to the production of specific prostanoids by unstimulated and stimulated intestinal epithelial cells. Cultured enterocytes were stimulated with lipopolysaccharide (LPS), interleukin-1 (IL-1)beta (IL-1 beta), and calcium ionophore (Ca Ion), with and without COX inhibitors. Valerylsalicylic acid (VSA) was employed as the COX-1 inhibitor, and SC-58125 and NS398 were used as the COX-2 inhibitors. Prostanoids were quantitated by Elisa assay. Western immunoblotting demonstrated the presence of constitutive COX-1 and inducible COX-2 enzyme. Unstimulated prostanoid formation was not decreased by the COX-1 inhibitor. All of the stimulants evaluated increased prostaglandin E2 (PGE2) production. Only Ca Ion stimulated prostaglandin D2 (PGD2) production while IL-1 beta, and Ca Ion, but not LPS, increased prostaglandin F2 alpha (PGF2 alpha) formation. Ca Ion-stimulated prostanoid formation was uniformly inhibited by COX-2, but not COX-1, inhibitors. IL-1 beta-stimulated PGE2 and PGE2 alpha formation was significantly decreased by both COX-1 and COX-2 inhibitors. VSA, in a dose-dependent manner, significantly decreased IL-1 beta-stimulated PGE2 and PGF2 alpha production. Unstimulated prostanoid formation was not dependent on constitutive COX-1 activity. The stimulation of intestinal epithelial cells by Ca Ion seemed to uniformly produce prostanoids through COX-2 activity. There was no uniform COX-1 or COX-2 pathway for PGE and PGF2 alpha formation stimulated by the inflammatory agents, suggesting that employing either a COX-1 or COX-2 inhibitor therapeutically will have varying effects on intestinal epithelial cells dependent on the prostanoid species and the inflammatory stimulus involved.  相似文献   

10.
Prostaglandin (PG) release is characteristic of most inflammatory diseases. The committed step in the formation of free arachidonic acid into PG products is catalyzed by cyclooxygenase (COX, prostaglandin H2 synthase, PGHS), which exists as two genetically distinct isoforms. COX-1 is constitutively expressed and produces PGs and thromboxane A2 during normal physiologic activities, while COX-2 is an inducible enzyme stimulated by growth factors, lipopolysaccharide, and cytokines during inflammation or cell injury. Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) released into the amniotic fluid in the setting of infection have been proposed to signal amnion and decidual cells to produce PGs that may culminate in preterm labor. However, since the molecular control of this phenomenon has not been established, this study used amnion-derived WISH cells to determine if TNF-alpha promoted the formation of PGs through COX-2 activity. Treatment of WISH cells with TNF-alpha (0.1 ng/mL-100 ng/mL) caused a dose-dependent increase in COX-2 expression and the subsequent biosynthesis of PGE2 that persisted for at least 48 hrs. In contrast, COX-1 mRNA and protein levels were unaltered by TNF-alpha treatment as determined by RT-PCR and immunoblot analysis, respectively. TNF-alpha-stimulated COX-2 expression and the subsequent formation of PGE2 were inhibited by dexamethasone (0.1 microM). In addition, indomethacin (1 microM) and the novel COX-2-selective inhibitor, NS-398 (IC50 approximately 1.1 x 10(-9) M), attenuated TNF-alpha-elicited PGE2 production. Results presented here demonstrate that TNF-alpha elicits prolonged and regulatable induction of COX-2 in WISH cells, while COX-1 is constitutively expressed and unchanged in response to TNF-alpha stimulation.  相似文献   

11.
We examined herein the functional linkage of enzymes regulating the initial, intermediate, and terminal steps of PG biosynthesis to provide PGs in rat peritoneal macrophages stimulated with LPS and/or A23187. Quiescent cells stimulated with A23187 produced thromboxane B2 (TXB2) in marked preference to PGE2 within 30 to 60 min (constitutive immediate response), which was mediated by preexisting cytosolic phospholipase A2 (cPLA2), cyclooxygenase-1 (COX-1), and TX synthase. Cells treated with LPS predominantly produced PGE2 during culture for 3 to 24 h (delayed response), where cPLA2 and secretory PLA2 functioned cooperatively with inducible COX-2, which was, in turn, coupled with inducible PGE2 synthase. Cells primed for 12 h with LPS and stimulated for 30 min with A23187 produced PGE2 in marked preference to TXB2 (induced immediate response), in which three inducible enzymes, cPLA2, COX-2, and PGE2 synthase, were functionally linked. Preferred coupling of the two inducible enzymes, COX-2 and PGE2 synthase, was further confirmed by the ability of LPS-treated cells to convert exogenous arachidonic acid to PGE2 optimally at a time when both enzymes were simultaneously induced. These results suggest that distinct PG biosynthetic enzymes display segregated functional coupling following different transmembrane stimulation events even when enzymes that catalyze similar reactions in vitro coexist in the same cells.  相似文献   

12.
Previous studies in bullfrogs have demonstrated the presence of leukotriene (LT)C4 binding sites in the brain. However, synthesis of eicosanoids by brain tissue has not been examined. Because prostaglandin (PG) synthesis differs in warm- and cold-acclimated bullfrog lung tissue, this study compared the synthesis of prostaglandins and leukotrienes in brains from warm-(22 degrees C) and cold-acclimated (5 degrees C) animals. Initial experiments determined that leukotriene and prostaglandin production rates were greatest during the initial 30 min time period. Therefore, tissues were incubated in Munsick's solution and gassed with 95% O2, 5% CO2 for 30 min. Media were analyzed by radioimmunoassay for LTC4, LTB4, PGE2, PGF2 alpha, TXB2, and 6-keto PGF1 alpha. In warm-acclimated bullfrog brains, production was as follows: LTC4 > PGE2 > 6-keto PGF1 alpha, thromboxane (TX)B2, LTB4, and PGF2 alpha. Brain tissues from cold-acclimated animals incubated at 22 degrees C produced significantly greater quantities of PGE2 and 6-keto PGF1 alpha than did brains from warm-acclimated animals. Stimulation of TXB2 levels was observed when the animal was stunned with a blow to the head prior to decapitation. Indomethacin, a cyclooxygenase inhibitor, decreased prostaglandin but not leukotriene synthesis. Epinephrine (4 x 10(-8) M), the amphibian sympathetic postganglionic neurotransmitter, stimulated leukotriene synthesis by brains from warm-acclimated bullfrogs, and the effect was blocked with the 5-lipoxygenase inhibitor MK-886 (5 x 10(-5) M). These results clearly indicate that the bullfrog brain synthesized both leukotrienes and prostaglandins. Further studies are necessary to determine their function in the amphibian central nervous system.  相似文献   

13.
This article contains the histomorphometric evaluation of the effects of prostaglandin F2 alpha (PGF2 alpha) on cancellous bone from the lumbar vertebra and cortical bone from the tibial shaft of ovariectomized, osteopenic rats. These effects were then compared with those of prostaglandin E2 (PGE2). Three-month-old rats were either ovariectomized (ovx) or sham-ovx. Then, either PGF2 alpha or PGE2 in doses of 1 and 3 mg/kg/day was given subcutaneously for 21 days at 150 days post ovx. Histomorphometric analysis was performed separately on both the primary and secondary spongiosae of the fourth lumbar vertebral bodies (LVB) and on tibial shafts. The ovx rats exhibited osteopenia in both primary (-23% to -37%) and secondary (-20%) spongiosae of the LVB, but not in the tibial shafts at 150 and 171 days post ovx. In the LVB, PGE2 in doses of 1 or 3 mg/kg/day for 21 days restored trabecular bone volume to the levels of sham-ovx controls in the primary spongiosa. However, in the secondary spongiosa, the treatments only thickened the trabeculae. The effects of the PGF2 alpha treatment were similar to those of the PGE2 in both the primary and the secondary spongiosae. While both PGF2 alpha and PGE2 treatments stimulated bone formation in the LVB as indicated by the increases in labeled perimeter, tissue and bone area-based bone formation rates, PGE2 is about 10 times more potent than PGF2 alpha in these effects. The PGE2 treatment also elevated activation frequency in the LVB, while the PGF2 alpha treatment did not. The treatments differed in that PGE2 at these dose levels did not alter the eroded surface in the LVB while PGF2 alpha decreased it significantly. Thus, the increase of the ratio of labeled to eroded perimeter in the LVB in PGF2 alpha-treated animals was much more than that in PGE2-treated animals. In the tibial shafts, PGE2 in doses of 1 and 3 mg/kg/day produced new marrow trabeculae in 2 of 6 and 3 of 6 of the ovx rats. However, no new trabecula was found in PGF2 alpha-treated tibial shafts. Higher doses of PGE2 also increased periosteal labeled perimeter, MAR, and BFR/BS, while PGF2 alpha did not produce any significant change in these parameters. Both PGE2 and PGF2 alpha in doses of 1 and 3 mg/kg/day increased the labeled perimeter, MAR and BFR/BS and decreased the eroded perimeter in the endocortical surface. We concluded that both PGF2 alpha and PGE2 in doses of 1 and 3 mg/kg/day for 21 days exhibited anabolic bone effects. The effects were mostly confined to an increase in trabecular volume in the primary spongiosa of the LVB and in the endocortical surface of tibial shafts. The tissue level mechanism behind this appears to be that PGE2 and PGF2 alpha can both stimulate osteoblast recruitment and activity. Overall, we found PGE2 to be more potent than PGF2 alpha at the same dose level at the endocortical surface. Furthermore, new marrow trabecular bone formed only after PGE2 treatment. PGF2 alpha differed from PGE2 by significantly reducing the trabecular eroded surface in ovx rats.  相似文献   

14.
This study was undertaken to investigate the enzymatic regulation of the biosynthesis of vasoconstrictor prostanoids by resting and interleukin (IL)-1(beta)stimulated human umbilical vein endothelial cells (HUVECs). Biosynthesis of eicosanoids in response to IL-1beta, exogenous labeled arachidonic acid (AA), or histamine, as well as their spontaneous release, was evaluated by means of HPLC and RIA. HUVECs exposed to IL-1beta produced prostaglandin (PG) I2 for no longer than 30 seconds after the substrate was added irrespective of the cyclooxygenase (COX) activity, whereas the time course of PGE2 and PGD2 formation was parallel to the COX activity. The ratio of PGE2 to PGD2 produced by HUVECs was similar to that obtained by purified COX-1 and COX-2. Production of PGF2alpha from exogenous AA was limited and similar in both resting and IL-1beta-treated cells. PGF2alpha was the main prostanoid released into the medium during exposure to IL-1beta, whereas when HUVECs treated with IL-1beta were stimulated with histamine or exogenous AA, PGE2 was released in a higher quantity than PGF2alpha. PGF2alpha released into the medium during treatment with IL-1beta and the biosynthesis of PGE2 and PGD2 in response to exogenous AA or histamine increased with COX-2 expression, whereas this did not occur in the case of PGI2. We observed that PGI synthase (PGIS) mRNA levels were not modified by the exposure to IL-1beta, but the enzyme was partially inactivated. When SnCl2 was added to the incubation medium, the transformation of exogenous AA-derived PGH2 into PGE2 and PGD2 was totally diverted toward PGF2alpha. Overall, these results support the conclusions that PGE2 and PGD2 (and also probably PGF2alpha) were nonenzymatically derived from PGH2 in HUVECs. The concept that a high ratio of PGH2 was released by the IL-1beta-treated HUVECs and isomerized outside the cell into PGE2 and PGD2 was supported by the biosynthesis of thromboxane B2 by COX-inactivated platelets, indicating the uptake by platelets of HUVEC-derived PGH2. The IL-1beta-induced increase in the release of PGH2 by HUVECs was suppressed by the COX-2-selective inhibitor SC-58125 and correlated with both COX-2 expression and PGIS inactivation. An approach to the mechanism of inactivation of PGIS by the exposure to IL-1beta was performed by using labeled endoperoxides as substrate. The involvement of HO. in the PGIS inactivation was supported by the fact that deferoxamine, pyrrolidinedithiocarbamate, DMSO, mannitol, and captopril antagonized the effect of IL-1beta on PGIS to different degrees. The NO synthase inhibitor NG-monomethyl-L-arginine also antagonized the PGIS inhibitory effect of IL-1beta, indicating that NO. was also involved. NO. reacts with O2-. to form peroxynitrite, which has been reported to inactivate PGIS. Homolytic fission of the O-O bond of peroxynitrite yields NO2. and HO.. The fact that 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), which reacts with NO. to form NO2., dramatically potentiated the IL-1beta effect suggests that NO2. could be a species implicated in the inactivation of PGIS. Cooperation of HO. was supported by the fact that DMSO partially antagonized the effect of carboxy-PTIO. Although our results on the exact mechanism of the inactivation of PGIS caused by IL-1beta were not conclusive, they strongly suggest that both NO. and HO. were involved.  相似文献   

15.
The present study measured the production of eicosanoids in the gerbil brain during early reperfusion after either a 3-h unilateral carotid occlusion (UCO, model of focal ischemia) or a 10-min bilateral carotid occlusion (BCO, model of global ischemia). Arachidonic acid (AA) metabolites were examined to determine if pretreatment with the 21-aminosteroid lipid peroxidation inhibitor U-74006F (tirilazad mesylate) could influence postreperfusion synthesis of brain eicosanoids. In the 3-h UCO focal ischemia model, there was an early (5-min) postreperfusion elevation in brain levels of PGF2 alpha, TXB2 and LTC4 (P < 0.05 vs. sham for all three eicosanoids). LTB4 also rose but not significantly. On the other hand, PGE2 and 6-keto-PGF1 alpha tended to decrease during ischemia and at 5-min postreperfusion (P < 0.05 vs. sham for PGE2). Pretreatment with known neuroprotective doses of U-74006F in this model (10 mg/kg i.p. 10 min before and again immediately upon reperfusion) did not affect the increase in PGF2 alpha or TXB2 but significantly blunted the elevations in LTC4 and LTB4. The postreperfusion decrease in PGE2 was also attenuated. In the 10-min BCO global ischemia model, there was also an increase in each of the measured eicosanoids, except LTB4, at 5 min after reperfusion. Pretreatment with U-74006F (10 mg/kg i.p. 10 min before ischemia) selectively decreased the rise in LTC4 but did not significantly affect the other eicosanoids. In contrast, the antioxidant actually caused a significant enhancement of the postreperfusion increase in PGE2 vs. vehicle-treated animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The anti-inflammatory effects of the non-steroidal anti-inflammatory drugs phenylbutazone (PBZ) and flunixin meglumine (FM) and the relationship between the effects and drug concentration in vivo were studied using a subcutaneous tissue-cage model in sheep. Intracaveal injection of carrageenan induced prostaglandin (PG) E2 production in tissue-cage exudate (maximal concentration, 101 nM) with significant increases in white blood cell (WBC) numbers, skin temperature over the inflamed cage and exudate leukotriene B4 (LTB4) concentration (P < 0.05). Intravenous PBZ, 4.4 mg kg-1 produced mild inhibition of exudate PGE2 generation (10%), but greater inhibition of serum TXB2 (75.3%). The IC50 for TXB2 was 36.0 microM. Phenylbutazone did not alter effects on skin temperature, WBC numbers or exudate LTB4 concentrations. Intravenous FM, 1.1 mg kg-1, significantly inhibited carrageenan-induced exudate PGE2 formation (Emax, 100%, IC50, < 0.4 nM) and serum TXB2 generation (Emax, 100%, IC50, 17 nM) for up to 32 h. Flunixin meglumine significantly inhibited the rise in skin temperature but had a limited effect on exudate WBC. Phenylbutazone and FM have distinct effects on carrageenan-induced cyclooxygenase (COX-2) and platelet COX (COX-1). Flunixin meglumine was a more potent COX inhibitor than PBZ and was more selective for the inducible form of COX in vivo.  相似文献   

17.
Effects of selective cyclooxygenase-2 (COX-2) inhibitors (NS-398) and nitric oxide (NO) -releasing aspirin (NO-ASA) on gastric ulcerogenic and healing responses were examined in comparison with nonselective COX inhibitors such as indomethacin and aspirin (ASA). Hypothermic stress (28-30 degrees C, 4 hr) induced gastric lesions in anesthetized rats with an increase of acid secretion. The lesions induced by hypothermic stress were markedly worsened by subcutaneous administration of both indomethacin and ASA but were not affected by either NS-398 or NO-ASA, although the increased acid secretion during hypothermia was not affected by any of the drugs. On the other hand, the healing of gastric ulcers induced in mice by thermal cauterization (70 degrees C, 15 sec) was significantly delayed by daily subcutaneous administration of indomethacin and ASA as well as NS-398, but not by NO-ASA. COX-2 mRNA was not detected in the intact mucosa but was positively expressed in the ulcerated mucosa, most potently on day 3 after ulceration. Prostaglandin contents in the intact mouse stomach were reduced by indomethacin, ASA, and NO-ASA, while the increased prostaglandin generation in the ulcerated mucosa was inhibited by all drugs including NS-398. After subcutaneous administration of NO-ASA to pylorus-ligated rats and mice, high amounts of NOx were detected in both the gastric contents and serum. In addition, both NS-398 and NO-ASA showed an equipotent antiinflammatory effect against carrageenan-induced paw edema in rats as compared with indomethacin and ASA. These results suggest that both indomethacin and ASA not only increased the mucosal ulcerogenic response to stress but impaired the healing response of gastric ulcers as well. The former action was due to inhibition of COX-1, while the latter effect was accounted for by inhibition of COX-2 and was mimicked by the COX-2-selective inhibitor NS-398. NO-ASA, although it inhibited both COX-1 and COX-2 activity, had no deleterious effects on gastric ulcerogenic and healing responses.  相似文献   

18.
The effect of dexamethasone on prostaglandin (PG) E2- and PGF2 alpha-induced fever was studied in rats. Intracerebroventricular injection of PGE2 and PGF2 alpha (500 ng) induced increases in body temperature (maximal temperature rises of 0.97 +/- 0.13 degrees C and 0.78 +/- 0.18 degrees C, respectively, vs. vehicle 0.12 +/- 0.09 degrees C) of unrestrained rats maintained within the thermoneutral zone. PGE2-induced fever peaked earlier and the defervescence was faster when compared to the response induced by PGF2 alpha. Subcutaneous pre-administration of dexamethasone (0.5 mg/kg) did not affect PGE2-induced fever (maximal temperature rise of 1.00 +/- 0.08 degrees C), but completely prevented the pyrogenic activity of PGF2 alpha (maximal temperature rise of 0.16 +/- 0.16 degrees C). Neither PGE2- nor PGF2 alpha-induced fever was significantly altered (maximal temperature rises of 0.90 +/- 0.11 degrees C and 0.64 +/- 0.14 degrees C, respectively) by intraperitoneal administration of indomethacin (2 mg/kg). These results demonstrate for the first time that glucocorticoids, in addition to inhibiting endotoxin- and cytokine-induced fever, can also modulate the pyrogenic activity of some prostaglandins, possibly via suppression of the synthesis of corticotropin-releasing factor, indicating that multiple mechanisms may be involved in the antipyretic activity of these steroids.  相似文献   

19.
OBJECTIVE: To determine the effects of interleukin 1alpha (IL-1alpha), tumor necrosis factor-alpha (TNF-alpha), dexamethasone, and 17beta-estradiol on the expression of cyclooxygenase-1 (COX-1) and COX-2 in bovine chondrocytes. METHODS: Northern blot analysis was used to quantify COX-1 and COX-2 mRNA expression in primary cultures of bovine chondrocytes and prostaglandin production to evaluate COX activity. RESULTS: IL-1alpha and TNF-alpha increased the expression of COX-2. This effect was independent of de novo protein synthesis and dependent on increased mRNA stability in the case of IL-1alpha. Dexamethasone inhibited the effects of both cytokines. 17beta-estradiol inhibited COX-2 mRNA expression in basal conditions, but had no effect on COX-2 expression induced by cytokines. The specific COX-2 inhibitor compound NS 398 prevented the increase in prostaglandin E2 (PGE2) production induced by the cytokines. COX-1 levels remained stable with all treatments. CONCLUSION: Increase in mRNA stability is a mechanism implicated in the induction of COX-2 by some cytokines. The effects of IL-1alpha and TNF-alpha on PGE2 production are mainly due to an increase in COX-2 activity as shown by the effect of compound NS 398. 17beta-estradiol inhibits COX-2 mRNA expression in basal conditions, suggesting that estrogens could be implicated in the control of cartilage metabolism.  相似文献   

20.
Artificially synthesized prostaglandins (PGE1, PGE2, PGF1alpha, and PGF2alpha) were found, using Boyden's chamber, to induce significant migration of polymorphonuclear leukocytes (PMNs) of the rabbit; PGF2alpha had greater effects than PGE1 or E2. A typical dose dependent relationship was found between the PMNs migration and PGF2alpha concentrations. Indomethacin pretreatments of rabbits did not significantly alter the PMNs migration indicating that PGs synthetized in vivo was not involved in the migration. PGF2alpha was placed in the lower compartment opposite to PMNs and also in the upper compartment together with PMNs. No significant difference was found in the number of migrated PMNs between the two experimental conditions. PGs diffusion occurred across the millipore filter separating the two compartments where the concentrations were almost equal at the end of 3 hours incubation. It was thus concluded that PGs effects are to induce random PMNs movements rather than to initiate chemotactic directional migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号