首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 84 毫秒
1.
ZnO对MPP/PEPA阻燃PP性能的影响   总被引:1,自引:0,他引:1  
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备具有良好阻燃性能的无卤阻燃PP.研究MPP/PEPA质量比和ZnO添加量对PP阻燃性能的影响.结果表明:MPP/PEPA质量比为3:2时,复配效果最好;添加少量的ZnO可以显著提高材料的阻燃性能;当MPP/PEPA/znO添加量分别为12%、8%和1%时,阻燃PP的极限氧指数达29.5%.TGA结果表明:添加ZnO可以起催化MPP/PEPA酯化,促进成炭的作用.SEM分析表明:ZnO可以起到稳定炭层.增加炭层厚度的作用.  相似文献   

2.
MPP/PEPA阻燃PP的制备及其性能研究   总被引:2,自引:1,他引:1  
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了具有良好阻燃性能的无卤阻燃PP.研究了各组分质量比及用量对PP阻燃性能的影响.结果表明:MPP/PEPA质量比为3∶2.且总量为20%时,可以制备氧指数为27%的阻燃PP,垂直燃烧等级为V-O.TGA结果表明:MPP/PEPA的复配可以延缓PP的分解,且提高成炭率.  相似文献   

3.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了无卤阻燃聚丙烯(PP).研究了MPP/PEPA质量比和TiO2添加量对PP阻燃性能的影响.结果表明:MPP/PEPA质量比为3∶2时,复配效果好;添加少量的TiO2可以显著提高PP的阻燃性能.当MPP/PEPA/TiO2添加质量分数分别为12%,8%和1%时,阻燃PP的氧指数高达31.5%.热失重分析结果表明:添加TiO2可以起催化MPP/PEPA酯化,促进成炭的作用.扫描电镜形貌观察表明,TiO2可以起到稳定炭层,增加炭层厚度作用.  相似文献   

4.
纳米SiO_2对MPP/PEPA阻燃PP性能的影响   总被引:2,自引:0,他引:2  
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)为复配阻燃剂,制备了无卤阻燃聚丙烯(PP)。研究了MPP/PEPA质量比和纳米SiO2用量对PP复合材料阻燃性能和力学性能的影响。结果表明:当MPP:PEPA=3:2时,协效阻燃效果最好,添加少量的纳米SiO2即可提高PP复合材料的阻燃和力学性能;当MPP、PEPA、纳米SiO2添加量分别为12%、8%和1%时,阻燃PP的氧指数达28.5%,并具有较好的力学性能。TGA和EDX结果表明:添加少量纳米SiO2可以催化MPP/PEPA间的酯化反应,促进PP复合材料成炭,保留更多的磷。SEM分析表明:添加少量的纳米SiO2可稳定炭层和加固泡孔,增强炭层隔热隔氧的能力。  相似文献   

5.
ZnO对PP/MPP/PEPA膨胀阻燃体系的协同作用   总被引:3,自引:1,他引:2  
以ZnO为阻燃协效剂,采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了具有良好阻燃性能的无卤阻燃PP。研究了ZnO用量对PP阻燃性能和协效作用的影响。结果表明:添加少量的ZnO即可显著提高PP的阻燃性能。当MPP、PEPA和ZnO添加量分别为12%、8%和1%时,阻燃PP的氧指数高达29.5%。TGA、FTIR分析和体式显微镜观测结果表明:添加ZnO可以催化MPP/PEPA间的酯化反应,促进体系成炭,形成更致密的炭层,从而提高材料的阻燃性能。  相似文献   

6.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了具有良好阻燃性能的膨胀阻燃聚丙烯(PP),研究了各组分质量比对PP阻燃性和热降解性能的影响.结果表明:MPP与PEPA质量比为3:2时,阻燃复配效果最好;且添加阻燃剂质量分数为20%时,极限氧指数达到27%,UL达到Ⅴ-0级;热失重分析结果表明,MPP/PEPA可以延缓PP的分解;利用Kissinger法求取了材料的活化能,发现添加阻燃剂后,材料的活化能提高;残留物的红外光谱分析结果表明,MPP复配PEPA后,保留了更多的PP特征峰;体视显微镜和扫描电镜分析表明,添加阻燃剂后,材料形成了膨胀炭层,提高了 PP阻燃性能.  相似文献   

7.
纳米SiO2对PP/MPP/PEPA膨胀阻燃体系的协同作用   总被引:2,自引:0,他引:2  
以纳米SiO,为阻燃协效剂,采用多聚磷酸蜜胺(MPP)和茏状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备具有良好阻燃性能的无卤阻燃聚丙烯(PP).研究纳米SiO2用量对PP阻燃性能和协效作用的影响.结果表明:添加少量的纳米SiO2可提高PP的阻燃性能;当纳米SiO2添加量为1%时,阻燃PP的氧指数达28.5%.TGA和FTIR分析及SEM和体式显微镜观测结果表明:添加少量的纳米SiO2可促进体系成炭,稳定炭层,从而提高材料的阻燃性能.  相似文献   

8.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了具有良好阻燃性能的膨胀阻燃聚丙烯(PP).研究了MPP/PEPA质量比和Cr2O3用量对PP阻燃和力学性能的影响.结果表明,MPP/PEPA质量比为3:2时,复配效果最好;添加少量的Cr2O3即可显著提高材料的阻燃性能.当MPP,PEPA,Cr2O3添加质量分数分别为12%,8%和2%时,阻燃PP的氧指数高达31.5%,且具有较好的力学性能.热失重(TGA)、扫描电镜(SEM)和Kissinger动力学分析表明添加Cr2O3可催化MPP/PEPA间的酯化反应,促进材料成炭,减缓材料的热降解速率,提高材料隔热、隔氧能力.  相似文献   

9.
将季戊四醇磷酸酯(PEPA)和三聚氰胺聚磷酸盐(MPP)复配成一种膨胀型阻燃剂(IFR),用于对长玻纤增强聚丙烯(LGFPP)进行阻燃。采用极限氧指数测试、垂直燃烧测试、扫描电子显微镜观察、热重分析、力学性能测试等方法探讨了该IFR组成对LGFPP的阻燃性能、热稳定性能以及力学性能的影响。结果表明,IFR的总添加量为20%,当PEPA与MPP质量比为11∶9时,复配阻燃效果最佳,阻燃LGFPP的极限氧指数值为26.1%,UL–94燃烧等级达到V–0级;生成的炭层致密、连续性好且稳定;阻燃LGFPP表现出较好的热稳定性与力学性能。  相似文献   

10.
采用自制季戊四醇螺环磷酸酯双蜜胺盐(MPP)无卤阻燃剂与聚丙烯(PP)进行共混纺丝,制备了无卤阻燃PP纤维,采用低能电子辐照对无卤阻燃PP纤维进行改性,并对MPP的结构、PP纤维的力学性能及阻燃性能进行了表征。结果表明:自制MPP为预期结构;随着MPP含量的增加,PP纤维的极限氧指数(LOI)增大,但其断裂强度有所下降;MPP质量分数为8%时,纤维断裂强度为6.02 cN/dtex,LOI为24.5%;随低能电子辐照量的增大,MPP质量分数8%的阻燃PP纤维的LOI大幅度增加;当电子辐照量为200 kGy时,阻燃PP纤维的LOI为33.8%,断裂强度为3.08 cN/dtex,起始分解温度和残炭率比纯PP纤维均有较大幅度增加,燃烧形成连续致密的炭层。  相似文献   

11.
用季戊四醇磷酸酯(PEPA)作成炭剂,与三聚氰胺磷酸盐(MP)和协效剂按一定比例复配成膨胀型阻燃剂(IFR),用于聚丙烯(PP)的阻燃。研究IFR含量对PP燃烧性能和力学性能的影响,结果表明:IFR添加量为23%时,阻燃PP的氧指数(LOI)为26.3%,阻燃等级达到UL94 V-0级。与PP相比,阻燃PP的拉伸强度、冲击强度降低,弯曲强度提高。采用差示扫描量热仪(DSC)、热失重(TG)、扫描电镜(SEM)等方法对阻燃PP的热性能、成炭性能等进行分析,结果表明:随IFR添加量增大,PP的结晶度增大,起始分解温度降低,高温成炭率提高。阻燃PP燃烧后形成表面致密,内部多孔的膨胀炭层结构。  相似文献   

12.
《塑料科技》2015,(11):28-31
采用熔融共混法制备了聚丙烯/焦磷酸三聚氰胺/季戊四醇(PP/MPP/PER)复合材料,研究了MPP/PER对PP阻燃性能的影响,并通过热重分析(TGA)和红外光谱(FTIR)对其阻燃机理进行了探究。结果表明:MPP/PER对PP具有良好的阻燃作用。当MPP/PER用量为25%、且其质量比为3:1时,阻燃PP的极限氧指数(LOI)达到29.0%;平均热释放速率(AHRR)、热释放速率峰值(PHRR)、总热释放量(THR)和最大比消光面积(PSEA)较纯PP明显下降。MPP/PER对PP的阻燃机理为:当基体受热燃烧时,MPP与PER发生脱水酯化、交联成炭反应,并在NH3作用下发泡膨胀,形成均匀多孔的膨胀炭层,覆盖在PP基体表面,阻隔氧气、可燃气体和热量的传输;同时,体系释放出NH3和水蒸气等不燃性气体,稀释了可燃性挥发物的浓度,有效地抑制了燃烧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号