首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and efficient headspace solvent microextraction (HSME) was developed for the simultaneous determination of the trace concentrations of some n-alkanes in water samples. Therefore, a microdrop of an organic solvent was extruded from the needle tip of a gas chromatographic syringe to the headspace above the surface of the solution in a sealed vial. Then the volatile organic compounds are extracted and concentrated in the microdrop. Next, the microdrop was retracted into the microsyringe and injected directly into the gas chromatograph. Experimental parameters which control the performance of HSME such as the type of microextraction solvent, organic drop and sample volume, sample stirring rate, sample solution and microsyringe needle temperatures, salt addition and exposure time profiles were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated. Using optimum extraction conditions, good linearity with correlation coefficients in the range of 0.995相似文献   

2.
A cloud point extraction (CPE) method for the preconcentration of trace aluminum prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. The CPE method is based on the complex of Al(III) with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP), and then entrapped in non-ionic surfactant Triton X-114. PMBP was used not only as chelating reagent in CPE preconcentration, but also as chemical modifier in GFAAS determination. The main factors affecting CPE efficiency, such as pH of sample solution, concentration of PMBP and Triton X-114, equilibration temperature and time, were investigated in detail. An enrichment factor of 37 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of this method for Al(III) is 0.09 ng mL(-1), and the relative standard deviation is 4.7% at 10 ng mL(-1) Al(III) level (n=7). The proposed method has been applied for determination of trace amount of aluminum in biological and water samples with satisfactory results.  相似文献   

3.
A new method based on the cloud point extraction (CPE) preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the determination of trace nickel in water samples. When the micelle solution temperature is higher than the cloud point of surfactant p-octylpolyethyleneglycolphenyether (Triton X-100), the complex of Ni2+ with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) could enter surfactant-rich phase and be concentrated, then determined by GFAAS. The main factors affecting the cloud point extraction were investigated in detail. An enrichment factor of 27 was obtained for the preconcentration of Ni2+ with 10 mL solution. Under the optimal conditions, the detection limit of Ni2+ is 0.12 ng mL(-1) with R.S.D. of 4.3% (n = 10, c = 100 ng mL(-1)). The proposed method was applied to determination of trace nickel in water samples with satisfactory results.  相似文献   

4.
Solvent microextraction into a single drop   总被引:4,自引:0,他引:4  
An analytical technique is described which combines solvent extraction with gas chromatographic (GC) analysis in a simple and inexpensive apparatus involving very little solvent consumption. A small drop (8 μL) of a water-immiscible organic solvent, containing an internal standard, is located at the end of a Teflon rod which is immersed in a stirred aqueous sample solution. After the solution has been stirred for a prescribed period of time, the probe is withdrawn from the aqueous solution, and the organic phase is sampled with a microsyringe and injected into the GC for quantification. The observed rate of solvent extraction is in good agreement with a convective-diffusive kinetic model. Analytically, the relative standard deviation of the method is 1.7% for a 5.00-min extraction of the analyte 4-methylacetophenone into n-octane.  相似文献   

5.
Solidified floating organic drop microextraction (SFODME), combined with graphite furnace atomic absorption spectrometry (GFAAS) was proposed for simultaneous separation/enrichment and determination of trace amounts of nickel and cobalt in surface waters and sea water. 1-(2-Pyridylazo)-2-naphthol (PAN) was used as chelating agent. The main parameters affecting the performance of SFODME, such as pH, concentration of PAN, extraction time, stirring rate, extraction temperature, sample volume and nature of the solvent were optimized. Under the optimum experimental conditions, a good relative standard deviation for six determination of 20 ng l−1 of Co(II) and Ni(II) were 4.6 and 3.6%, respectively. An enrichment factor of 502 and 497 and detection limits of 0.4 and 0.3 ng l−1 for cobalt and nickel were obtained, respectively. The procedure was applied to tap water, well water, river water and sea water, and accuracy was assessed through the analysis of certified reference water or recovery experiments.  相似文献   

6.
Wu HF  Yen JH  Chin CC 《Analytical chemistry》2006,78(5):1707-1712
A novel analytical technique termed drop-to-drop solvent microextraction (DDSME) was developed to determine three methoxyacetophenone isomers in one drop of water, which were then detected by gas chromatography/mass spectrometry using electronic ionization mass spectrometry for quantification analysis and self-ion/molecule reaction/tandem mass spectrometry for isomer differentiation. The best optimum parameters for the DDSME technique were as follows: extraction time, 5 min; using toluene as the extraction solvent; volume of extraction solvent, 0.5 microL and no salt addition. The advantages of this method are rapidity, convenience, ease of operation, simplicity of the device, and extremely little solvent and sample consumption. The limit of detection (LOD) for this technique was 1 ng/mL. The relative standard deviation was less than 2.6% (n = 5). The linear range of the calibration curve of DDSME is from 0.01 to 5 microg/mL with correlation coefficient (r2) of >0.954. In the comparison of the LOD of DDSME with other sample pretreatment methods including liquid/liquid extraction (LLE), single-drop microextraction (SDME), solid-phase microextraction (SPME), and liquid-phase microextraction (LPME) using a dual gauge microsyringe with hollow fiber methods, this method shows much better in sensitivity than the LLE (25 ng/mL) and it is compatible with SDME (0.5 ng/mL), SPME (0.5 ng/mL), and LPME using a dual gauge microsyringe with a hollow fiber (1 ng/mL). However, DDSME was more convenient than the LPME using a dual gauge microsyringe with a hollow fiber method and much lower cost than the SPME technique.  相似文献   

7.
Liu W  Lee HK 《Analytical chemistry》2000,72(18):4462-4467
A novel liquid-liquid microextraction method, that we have termed continuous-flow microextraction (CFME), is described. In a 0.5-mL glass chamber, an organic drop (1-5 microL) is held at the outlet tip of a polyetheretherketone (PEEK) connecting tubing which is immersed in a continuously flowing sample solution and acts as the fluid delivery duct and as a solvent holder. Extraction takes place between the organic drop and the flowing sample solution that is continuously ejected out of the PEEK tubing. Concentration factors of between 260- to 1600-fold are achieved within 10 min of extraction. Aspects relevant to CFME were studied. In combination with gas chromatography-electron capture detection, CFME allows analytes to be detected at femtogram-per-milliliter levels. The performance of this technique was evaluated on the basis of the analysis of trace nitroaromatic compounds and chlorobenzenes in environmental samples.  相似文献   

8.
A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0molL(-1) HNO(3) was used as eluent. The metal ions in 300mL solution can be concentrated to 1.0mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4ngL(-1) for Cr(III), 1.0ngL(-1) for Ni(II), 0.85ngL(-1) for Ag(I), 1.2ngL(-1) for Co(II), 1.0ngL(-1) for Cu(II), 1.2ngL(-1) for Cd(II) and 1.3ngL(-1) for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method).  相似文献   

9.
In this study three major types of preconcentration methods based upon different principles (cation exchange, physical absorption and hydrophobic extraction) were evaluated and optimized for the extraction and determination of three highly toxic heavy metals namely Cd, Pb and Sn by graphite furnace and hybrid generation atomic absorption spectrometry in real samples. The optimum analytical conditions were examined and the analytical features of each method were revealed and compared. Detection limits as low as 0.003-0.025 microg L(-1) for Cd(2+), 0.05-0.10 microg L(-1) for Pb(2+) and 0.1-0.25 microg L(-1) for Sn(4+) depending on the extraction method were obtained with RSD values between 3.08% and 6.11%. A preliminary assessment of the pollution status of three important natural ecosystems in Epirus region (NW Greece) was performed and some early conclusions were drawn and discussed.  相似文献   

10.
Jiang X  Oh SY  Lee HK 《Analytical chemistry》2005,77(6):1689-1695
A new dynamic liquid-liquid-liquid microextraction procedure, with the automated movement of acceptor phase (LLLME/AMAP) to facilitate mass transfer, was developed in this study. Four compounds, 3-nitrophenol, 4-nitrophenol, 3,4-dinitrophenol, and 2,4-dichlorophenol, were used as model compounds to be preconcentrated from water samples. The extraction involved filling a 2-cm length of hollow fiber with 4 muL of acceptor solution using a conventional microsyringe, followed by impregnation of the pores of the fiber wall with 1-octanol. The fiber was then immersed in 4 mL of aqueous sample solution. The analytes in the sample solution were extracted into the organic solvent and then back-extracted into the acceptor solution. During extraction, the acceptor phase was repeatedly moved in and out of the hollow fiber channel and the syringe controlled by a syringe pump. Separation and quantitative analyses were then performed by using high-performance liquid chromatography. The results indicated that up to 400-fold enrichment of the analytes could be obtained under the optimized conditions. The enrichment factors were two times those of static liquid-liquid-liquid microextraction. Good repeatabilities (RSD values below 9.30%) were obtained. The calibration linear range was from 10 to 1000 ng/mL with the square of the correlation coefficient (r2) >0.9916. Detection limits were in the range of 0.45-0.98 ng/mL. In addition, as compared with the previously reported dynamic three-phase microextraction in which there was no relative movement between the acceptor and the organic phase (which is not conducive to effective mass transfer), this new method shows much higher extraction efficiency. All these results suggest that this new dynamic LLLME/AMAP technique could be a better alternative to the previous LLLME for the extraction of analytes from aqueous samples.  相似文献   

11.
本文采用石墨炉原子吸收光谱法直接测定纺织品萃取液中砷。通过在样品萃取液中加入基体改进剂,并对石墨炉原子化工作条件和基体改进剂用量进行优化。结果表明,加入4μL 50g/L硝酸镍基体改进剂,可以有效降低高浓度氯化钠基体的影响,样品检出限可达到0.05mg/kg,相对标准偏差为为1.65~3.44%,实际纺织品样品加标回收率为93.8%~103%。该方法具有快速、准确、灵敏度高等优点,适用于测定纺织品萃取汗液中砷含量的检测。  相似文献   

12.
A method was developed for the determination of gadolinium (Gd) in biological material using graphite furnace atomic absorption spectrometry (GFAAS). The element is first extracted into methyl isobutyl ketone and then reextracted into hydrochloric acid. Factors influencing the recovery of extraction such as pH, choice of chelating agents, and hydrochloric acid concentration have been investigated. The element is determined under STPF (stabilized temperature platform furnace) conditions with atomization from a tantalum boat. Under optimized furnace conditions, the use of the tantalum boat improved sensitivity substantially compared to the use of pyrolytically coated graphite tubes. Around 150 measurements could be performed with 1 boat. Memory effects, being a common problem in the GFAAS determination of lanthanoids, were no longer observed after insertion of the boat. The characteristic mass and detection limit (2SD; SD = standard deviation) of the Gd determination are 1000 and 2060 pg, respectively. The precision evaluated as the relative standard deviation (RSD) of six analyses was below 10% for tissue Gd concentrations ranging from 0.92 to 72.0 micrograms g-1. The recovery of added analyte ranged between 92.0% and 99.3%. The method was found to be suitable for studying the pharmacokinetics and biodistribution of Gd in rats.  相似文献   

13.
Solidified floating organic drop microextraction (SFODME) method in combination with graphite furnace atomic absorption spectrometry (GFAAS) has been used for the determination of chromium species in water and urine samples. 1-undecanol containing 2-thenoyltrifluoroacetone (TTA) was used as a selective chelating agent for the extraction of Cr(III). The total Cr was determined after the reduction of Cr(VI) to Cr(III) with hydroxylamine. The concentration of Cr(VI) was determined from the difference between the concentration of total chromium and the Cr(III). Several variables such as the sample pH, concentration of TTA, salt concentration, extraction time and the sample volume were investigated in detail. Under the optimum conditions, the limit of detection of the proposed method was 0.006 μg l(-1) for Cr(III) and the relative standard deviation for six replicate determinations at 0.1 μg l(-1) Cr(III) was 5.1%. The proposed method was successfully applied for the determination of chromium species in tap water, well water, mineral water, and urine samples.  相似文献   

14.
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer TiO2) was prepared by sol-gel method and characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorptive capability of immobilized nanometer TiO2 for lead was assessed in this work using column method. It was found that lead can be quantitatively retained by immobilized nanometer TiO2 in the pH range 4-7, then eluted completely with 1.0molL(-1) HCl. The adsorption capacity of immobilized nanometer TiO2 for Pb was found to be 3.16mgg(-1). A new method has been developed for the determination of trace lead based on preconcentration with a microcolumn packed with immobilized nanometer TiO2 prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS). The detection limit of this method for Pb was 9.5ngL(-1) with an enrichment factor of 50, and the relative standard deviations (R.S.D.s) was 3.2% at the 10ngmL(-1) Pb level. The method was validated using a certified reference material, and was applied for the determination of trace lead in water samples.  相似文献   

15.
Lead and nickel were preconcentrated as their ethylenediaminetetraacedic acid (EDTA) complexes from aqueous sample solutions using a column containing Ambersorb-572 and determined by flame atomic absorption spectrometry (FAAS). pH values, amount of solid phase, elution solution and flow rate of sample solution have been optimized in order to obtain quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of Pb and Ni under the optimum conditions were 99 +/- 2 and 97 +/- 3%, respectively, at 95% confidence level. Seventy-five-fold (using 750 mL of sample solution and 10 mL of eluent) and 50-fold (using 500 mL of sample solution and 10 mL of eluent) preconcentration was obtained for Pb and Ni, respectively. Time of analysis is about 4.5 h (for obtaining enrichment factor of 75). By applying these enrichment factors, the analytical detection limits of Pb and Ni were found as 3.65 and 1.42 ng mL(-1), respectively. The capacity of the sorbent was found as 0.17 and 0.21 mmol g(-1) for Pb and Ni, respectively. The interferences of some cations, such as Mn2+, Co2+, Fe3+, Al3+, Zn2+, Cd2+, Ca2+, Mg2+, K+ and Na+ usually present in water samples were also studied. This procedure was applied to the determination of lead and nickel in parsley, green onion, sea water and waste water samples. The accuracy of the procedure was checked by determining Pb and Ni in standard reference tea leaves sample (GBW-07605). The results demonstrated good agreement with the certified values.  相似文献   

16.
Admicellar sorbents for the removal of an iron matrix were prepared for the determination of trace impurities in high-purity iron. A 1.0-g amount of Amberlite XAD-4 (macroreticular styrene-divinylbenzene copolymer) was coated with 0.14-1.3 mmol of polyoxyethylene-type surfactants, including polyoxyethylene-4-tert-octylphenoxy ethers (Triton X series) and polyoxyethylene-4-isononylphenoxy ethers (PONPEs). The surfactant-coated XAD-4 was packed into a polypropylene column (7 mm i.d. x 50 mm high). A 5.0-cm(3) volume of sample solution was passed through the column at a flow rate of 0.5 cm(3) min(-1). Milligram amounts of iron(III) were effectively sorbed on the column from 8 mol dm(-3) hydrochloric acid solutions. Among the surfactants tested, polyoxyethylene(20)-4-isononylphenoxy ether (PONPE-20) showed the best performance: the iron leaked from the PONPE-20 column was 4 microg when 25 mg of iron(III) was introduced onto the column. Trace elements, such as Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Cd(II), Pb(II), and Bi(III), were not retained on the column and thus quantitatively recovered in the column effluent. The effective separation of trace elements from an iron matrix allowed their accurate determinations by inductively coupled plasma-mass spectrometry or graphite furnace atomic absorption spectrometry. The detection limits (3sigma blank) were in the nanogram per gram range. The proposed method was successfully applied to the determination of trace impurities in high-purity iron samples.  相似文献   

17.
Yan XP  Sperling M  Welz B 《Analytical chemistry》1999,71(19):4353-4360
A flow injection manifold with an air-segmented and air-transported operational sequence for on-line coupling of microcolumn separation and preconcentration to electro-thermal atomic absorption spectrometry (ETAAS) was developed for the determination of (ultra)trace selenite and selenate in water. The determination of selenite was achieved by selective reaction with pyrrolidine dithiocarbamate (PDC), sorption of the resultant Se-PDC compound onto a conical microcolumn (10.2 microL) packed with RP C18 sorbent, elution with ethanol, and detection by ETAAS. The concentration of selenate was obtained as the difference between the concentrations of selenite after and before prereduction of selenate to selenite. With the developed manifold and operation sequence,the dispersion during elution and eluate transport and the eluent volume required for complete elution of the sorbed analyte were minimized. As a result, the sorbed analyte was quantitatively eluted from the column with only 26 microL of ethanol, and all the eluate was automatically introduced into the graphite tube by an air flow without the need of preheating the graphite tube or precise timing. Pretreatment of the graphite tube with iridium as a long-term "permanent" modifier effectively prevented analyte loss arising from the high volatility of the Se-PDC compound and greatly improved the precision, sensitivity, and detection limit. One thermal pretreatment of the graphite tube with injection of 150 microgram of iridium made possible at least 200 repetitive atomization cycles. With a preconcentration time of 180 s and a sample flow rate of 1.4 mL min(-1), an enhancement factor of 112 was achieved in comparison with direct injection of 30 microL of aqueous solution. The detection limit (3s) was 4.5 ng L(-1)Se. The RSD (n = 7) was 3.8% at 20 ng L(-1)Se. The concentrations of selenite and selenate determined in synthetic aqueous mixtures were in good agreement with the expected values. The recoveries for selenite from spiked seawater samples ranged from 98 to 102%. The concentrations of selenite in several seawater reference materials obtained with simple aqueous standard solutions for calibration agreed well with the certified and information values, respectively. In addition, the developed method was successfully applied to the certification of selenite and selenate in water.  相似文献   

18.
Electrothermal vaporization from a graphite furnace was used in combination with inductively coupled plasma mass spectrometry (ICPMS) for the determination of Pt and Rh in environmental matrixes. Solid samples of tunnel dust, grass, and atmospheric aerosol collected on a cellulose filter could be analyzed directly, such that sample dissolution-which is not self-evident for the determination of platinum group metals-could be avoided. By heating the graphite furnace according to a multistep temperature program, spectral interferences were avoided, since a "dry" plasma was obtained, while "parent" ions such as Cu, Zn, and Pb, giving origin to interfering molecular ions, were vaporized during the thermal pretreatment step. For tunnel dust, the most demanding sample matrix, a mixture of HCl and HF was used as a modifier to stimulate the vaporization of matrix components during the thermal pretreatment step and, hence, to alleviate matrix-induced analyte signal suppression during the actual vaporization step. Calibration was accomplished by means of single standard addition with an aqueous standard solution. The results obtained agreed within the experimental uncertainty with the corresponding reference values (certified values or results obtained using pneumatic nebulization ICPMS), while relative standard deviations of < or = 15% were typical for both Pt and Rh. In all samples, a Pt/Rh ratio of approximately 6-8 was established. For a typical sample mass of 2 mg, limits of detection were 0.35 ng/g for Pt and 0.05 ng/g for Rh.  相似文献   

19.
A simple, highly sensitive and environment-friendly method for the determination of trace amount of nickel ion in different matrices is proposed. In the preconcentration step, the nickel from 10 mL of an aqueous solution was extracted into 500 μL of ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6], containing PAN as complexing agent. Subsequently, the PAN complex was back-extracted into 250 μL of nitric acid solution, and 100 μL of it was analyzed by flow injection flame atomic absorption spectrometry (FI-FAAS). The main parameter influencing the extraction and determination of nickel, such as pH, concentration of PAN, extraction time and temperature, ionic strength, and concentration of stripping acid solution, were optimized. An enhancement factor of 40.2 was achieved with 25 mL sample. The limit of detection (LOD) and quantification obtained under the optimum conditions were 12.5 and 41.0 μg L?1, respectively. To validate the proposed methods two certified reference materials 681-I and BCR No. 288 were analyzed and the results were in good agreement with the certified values. The proposed method was successfully applied to determination of nickel in water samples, rice flour and black tea.  相似文献   

20.
A probe injection dual-microplasma spectrometer is evaluated as a low-cost alternative for the determination of extractable organic chlorine and bromine (EOCl and EOBr). The system consists of two 350 kHz plasmas sustained in the same stream of helium and a probe for sample application in the interplasma region. The sample was applied with a microsyringe into a small cup on the sample probe. Subsequently, the extraction solvent was gently evaporated, and the sample cup was pushed into the interplasma region. The first plasma was in direct contact with the sample probe and served to rapidly vaporize the sample material. The vaporized sample was then transferred to the second plasma, where atomic emission was measured for the determination of EOCl and EOBr. For both Cl and Br, 120 pg detection limits and 1000:1 halogen-to-carbon selectivities were obtained, and responses were linear over 3 orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号