首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
BACKGROUND: We have isolated a series of temperature-sensitive mutants for cell-proliferation from the BHK21 cell line derived from the golden hamster (Nishimoto & Basilico 1978; Nishimoto et al. 1982). Using these mutants as a recipient of DNA-mediated gene transfer, we have been cloning human genes which complement these ts mutants. RESULTS: Cultures of tsBN269 cells, a temperature-sensitive mutant of the BHK21 cell line, underwent apoptosis at 39.5 degrees C, a nonpermissive temperature. The gene complementing the tsBN269 cells was cloned and found to encode lysyl-tRNA synthetase. Indeed, tsBN269 cells were found to have a single cytosine to a thymine point mutation at the first nucleotide of codon 542 in hamster lysyl-tRNA synthetases. Due to this mutation, the activity of lysyl-tRNA synthetase was reduced--even at 33.5 degrees C, a permissive temperature. Consistent with these findings, while supplementation with lysine permitted tsBN269 cells to grow at a nonpermissive temperature, the deprivation of lysine caused apoptosis in tsBN269 cells, even at 33.5 degrees C. Cycloheximide inhibited the apoptosis caused by lysine starvation at 33.5 degrees C, but not at 39.5 degrees C. We also found that another hamster temperature-sensitive mutant, tsBN250, which is defective in histidyl-tRNA synthetase, entered apoptosis with the deprivation of histidine. CONCLUSION: Our data suggested that the defect in aminoacyl-tRNA synthetase turned on the cascade of apoptosis that was already present in the cells.  相似文献   

2.
3.
4.
Infection of KB cells at 39.5 degrees C with H5ts147, a temperature-sensitive (ts) mutant of type 5 adenovirus, resulted in the cytoplasmic accumulation of hexon antigen; all other virion proteins measured, however, were normally transported into the nucleus. Immunofluorescence techniques were used to study the intracellular location of viral proteins. Genetic studies revealed that H5ts147 was the single member of a nonoverlapping complementation group and occupied a unique locus on the adenovirus genetic map, distinct from mutants that failed to produce immunologically reactive hexons at 39.5 degrees C ("hexon-minus" mutants). Sedimentation studies of extracts of H5ts147-infected cells cultured and labeled at 39.5 degrees C revealed the production of 12S hexon capsomers (the native, trimeric structures), which were immunoprecipitable to the same extent as hexons synthesized in wild type (WT)-infected cells. In contrast, only 3.4S polypeptide chains were found in extracts of cells infected with the class of mutants unable to produce immunologically reactive hexon protein at 39.5 degrees C. Hexons synthesized in H5ts147-infected cells at 39.5 degrees C were capable of being assembled into virions, to the same extent as hexons synthesized in WT-infected cells, when the temperature was shifted down to the permissive temperature, 32 degrees C. Infectious virus production was initiated within 2 to 6 h after shift-down to 32 degrees C; de novo protein synthesis was required to allow this increase in viral titer. If ts147-infected cells were shifted up to 39.5 degrees C late in the viral multiplication cycle, viral production was arrested within 1 to 2 h. The kinetics of shutoff was similar to that of a WT-infected culture treated with cycloheximide at the time of shift-up. The P-VI nonvirion polypeptide, the precursor to virion protein VI, was unstable at 39.5 degrees C, whereas the hexon polypeptide was not degraded during the chase. It appears that there is a structural requirement for the transport of hexons into the nucleus more stringent than the acquisition of immunological reactivity and folding into the 12S form.  相似文献   

5.
Previous studies have suggested that the U(L)17 gene of herpes simplex virus type 1 (HSV-1) is essential for virus replication. In this study, viral mutants incorporating either a lacZ expression cassette in place of 1,490 bp of the 2,109-bp U(L)17 open reading frame [HSV-1(deltaU(L)17)] or a DNA oligomer containing an in-frame stop codon inserted 778 bp from the 5' end of the U(L)17 open reading frame [HSV-1(U(L)17-stop)] were plaque purified on engineered cell lines containing the U(L)17 gene. A virus derived from HSV-1(U(L)17-stop) but containing a restored U(L)17 gene was also constructed and was designated HSV-1(U(L)17-restored). The latter virus formed plaques and cleaved genomic viral DNA in a manner indistinguishable from wild-type virus. Neither HSV-1(deltaU(L)17) nor HSV-1(U(L)17-stop) formed plaques or produced infectious progeny when propagated on noncomplementing Vero cells. Furthermore, genomic end-specific restriction fragments were not detected in DNA purified from noncomplementing cells infected with HSV-1(deltaU(L)17) or HSV-1(U(L)17-stop), whereas end-specific fragments were readily detected when the viruses were propagated on complementing cells. Electron micrographs of thin sections of cells infected with HSV-1(deltaU(L)17) or HSV-1(U(L)17-stop) illustrated that empty capsids accumulated in the nuclei of Vero cells, whereas DNA-containing capsids accumulated in the nuclei of complementing cells and enveloped virions were found in the cytoplasm and extracellular space. Additionally, protein profiles of capsids purified from cells infected with HSV-1(deltaU(L)17) compared to wild-type virus show no detectable differences. These data indicate that the U(L)17 gene is essential for virus replication and is required for cleavage and packaging of viral DNA. To characterize the U(L)17 gene product, an anti-U(L)17 rabbit polyclonal antiserum was produced. The antiserum reacted strongly with a major protein of apparent Mr 77,000 and weakly with a protein of apparent Mr 72,000 in wild-type infected cell lysates and in virions. Bands of similar sizes were also detected in electrophoretically separated tegument fractions of virions and light particles and yielded tryptic peptides of masses characteristic of the predicted U(L)17 protein. We therefore conclude that the U(L)17 gene products are associated with the virion tegument and note that they are the first tegument-associated proteins shown to be required for cleavage and packaging of viral DNA.  相似文献   

6.
The putative envelope glycoproteins of hepatitis C virus (HCV) likely play an important role in the initiation of viral infection. Available information suggests that the genomic regions encoding the putative envelope glycoproteins, when expressed as recombinant proteins in mammalian cells, largely accumulate in the endoplasmic reticulum. In this study, genomic regions which include the putative ectodomain of the E1 (amino acids 174 to 359) and E2 (amino acids 371 to 742) glycoproteins were appended to the transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein. This provided a membrane anchor signal and the VSV incorporation signal at the carboxy termini of the E1 and E2 glycoproteins. The chimeric gene constructs exhibited expression of the recombinant proteins on the cell surface in a transient expression assay. When infected with a temperature-sensitive VSV mutant (ts045) and grown at the nonpermissive temperature (40.5 degrees C), cells transiently expressing the E1 or E2 chimeric glycoprotein generated VSV/HCV pseudotyped virus. The resulting pseudotyped virus generated from E1 or E2 surprisingly exhibited the ability to infect mammalian cells and sera derived from chimpanzees immunized with the homologous HCV envelope glycoproteins neutralized pseudotyped virus infectivity. Results from this study suggested a potential functional role for both the E1 and E2 glycoproteins in the infectivity of VSV/HCV pseudotyped virus in mammalian cells. These observations further suggest the importance of using both viral glycoproteins in a candidate subunit vaccine and the potential for using a VSV/HCV pseudotyped virus to determine HCV neutralizing antibodies.  相似文献   

7.
8.
9.
Cytoplasmic RNA sequences produced in HeLa cells infected with the adeno-virus 5 temperature-sensitive mutants ts1, ts2, ts9, ts17, ts18, ts19, ts20, ts22, ts49, ts36, and ts125 were characterized by hybridization to DNA probes generated by strand separation of restriction endonuclease fragments of adenovirus 5 DNA. Two "early' mutants defective in DNA synthesis, ts125 and ts36, fail to make wild-type levels of all previously reported classes of late RNA at the nonpermissive temperature. At 40.5 degrees C, both ts125 and ts36 synthesize a wild-type complement of early cytoplasmic RNA 16 h after infection. Under these conditions, no "late' cytoplasmic RNA sequences were observed. Similarly, nuclear RNA present in these cells resembled early cytoplasmic RNA rather than late nuclear RNA. All the late adenovirus 5 temperature-sensitive mutants synthesized normal wild-type levels of late cytoplasmic RNA at the nonpermissive temperature, except ts2, which appears to overproduce certain cytoplasmic species.  相似文献   

10.
Mutations in the alkaline nuclease gene of herpes simplex type 1 (HSV-1) (nuc mutations) induce almost wild-type levels of viral DNA; however, mutant viral yields are 0.1 to 1% of wild-type yields (L. Shao, L. Rapp, and S. Weller, Virology 195:146-162, 1993; R. Martinez, L. Shao, J.C. Bronstein, P.C. Weber, and S. Weller, Virology 215:152-164, 1996). nuc mutants are defective in one or more stages of genome maturation and appear to package DNA into aberrant or defective capsids which fail to egress from the nucleus of infected cells. In this study, we used pulsed-field gel electrophoresis to test the hypothesis that the defects in nuc mutants are due to the failure of the newly replicated viral DNA to be processed properly during DNA replication and/or recombination. Replicative intermediates of HSV-1 DNA from both wild-type- and mutant-infected cells remain in the wells of pulsed-field gels, while free linear monomers are readily resolved. Digestion of this well DNA with restriction enzymes that cleave once in the viral genome releases discrete monomer DNA from wild-type virus-infected cells but not from nuc mutant-infected cells. We conclude that both wild-type and mutant DNAs exist in a complex, nonlinear form (possibly branched) during replication. The fact that discrete monomer-length DNA cannot be released from nuc DNA by a single-cutting enzyme suggests that this DNA is more branched than DNA which accumulates in cells infected with wild-type virus. The well DNA from cells infected with wild-type and nuc mutants contains XbaI fragments which result from genomic inversions, indicating that alkaline nuclease is not required for mediating recombination events within HSV DNA. Furthermore, nuc mutants are able to carry out DNA replication-mediated homologous recombination events between inverted repeats on plasmids as evaluated by using a quantitative transient recombination assay. Well DNA from both wild-type- and mutant-infected cells contains free U(L) termini but not free U(S) termini. Various models to explain the structure of replicating DNA are considered.  相似文献   

11.
Nuclear protein import requires a nuclear localization signal (NLS) receptor and at least three other cytoplasmic factors. The alpha subunit of the NLS receptor, Rag cohort 1 (Rch1), enters the nucleus, probably in a complex with the beta subunit of the receptor, as well as other import factors and the import substrate. To learn more about which factors and/or events end the import reaction and how the import factors return to the cytoplasm, we have studied nucleocytoplasmic shuttling of Rch1 in vivo. Recombinant Rch1 microinjected into Vero or tsBN2 cells was found primarily in the cytoplasm. Rch1 injected into the nucleus was rapidly exported in a temperature-dependent manner. In contrast, a mutant of Rch1 lacking the first 243 residues accumulated in the nuclei of Vero cells after cytoplasmic injection. After nuclear injection, the truncated Rch1 was retained in the nucleus, but either Rch1 residues 207-217 or a heterologous nuclear export signal, but not a mutant form of residues 207-217, restored nuclear export. Loss of the nuclear transport factor RCC1 (regulator of chromosome condensation) at the nonpermissive temperature in the thermosensitive mutant cell line tsBN2 caused nuclear accumulation of wild-type Rch1 injected into the cytoplasm. However, free Rch1 injected into nuclei of tsBN2 cells at the nonpermissive temperature was exported. These results suggested that RCC1 acts at an earlier step in Rch1 recycling, possibly the disassembly of an import complex that contains Rch1 and the import substrate. Consistent with this possibility, incubation of purified RanGTP and RCC1 with NLS receptor and import substrate prevented assembly of receptor/substrate complexes or stimulated their disassembly.  相似文献   

12.
Fecal specimens from a baby vaccine were collected every day from 1 to 51 days after primary vaccination and from 0 to 15 days after secondary vaccination. Polioviruses were isolated with GMK-2 cell line from 10% emulsion of the feces and titrated the virus contents in the emulsion of the feces. The isolated viruses were tested the reproductive capacity at 39.0 degrees C and 39.5 degrees C by the plaque method with primary cynomologous monkey kidney cells. Viruses were isolated from the feces during 28 days for type 1, 39 days for type 2 and 36 days for type 3 after primary vaccination, however, only type 1 viruses were isolated during 7 days after secondary vaccination. The multiplication of type 3 viruses in the intestine were increased after diminished the multiplication of type 1 and type 2. In plaque formation capacity at 39.0 degrees C and 39.5 degrees C, the isolates had shown to differ clearly among the types of poliovirus. After primary vaccination, type 1 isolates were not produced the plaques at 39.0 degrees C and 39.5 degrees C. Although type 2 isolates were not formed the plaques until the 14th day at 39.5 degrees C, the plaque formation capacity of the these isolates were increased gradually i.e.; on the 20th day (10(0.88) PFU/ml), the 26th day (10(2.00) PFU/ml) and the 39th day (10(2.63) PFU/ml) at 39.5 degrees C, and all of type 2 isolates tested were showed the plaque formation capacity (10(2.88 approximately 10(3.76) PFU/ml) at 39.0 degrees C. Type 3 isolates were formed plaques at 39.0 degrees C and 39.5 degrees C from the 7th day. After the secondary vaccination, type 1 isolates (7th day) was a little changed them. Neutralizing antibody titers were shown that type 1 was 320, type 2 was 110 and type 3 was 60 after 1 year of the second administration. These titers were closely similar the geometric mean titers of 2 year old babies in Japan.  相似文献   

13.
By incubating at 30 degrees C in the presence of an energy source, p34(cdc2)/cyclin B was activated in the extract prepared from a temperature-sensitive mutant, tsBN2, which prematurely enters mitosis at 40 degrees C, the nonpermissive temperature (Nishimoto, T. , E. Eilen, and C. Basilico. 1978. Cell. 15:475-483), and wild-type cells of the hamster BHK21 cell line arrested in S phase, without protein synthesis. Such an in vitro activation of p34(cdc2)/cyclin B, however, did not occur in the extract prepared from cells pretreated with protein synthesis inhibitor cycloheximide, although this extract still retained the ability to inhibit p34(cdc2)/cyclin B activation. When tsBN2 cells arrested in S phase were incubated at 40 degrees C in the presence of cycloheximide, Cdc25B, but not Cdc25A and C, among a family of dual-specificity phosphatases, Cdc25, was lost coincidentally with the lack of the activation of p34(cdc2)/cyclin B. Consistently, the immunodepletion of Cdc25B from the extract inhibited the activation of p34(cdc2)/cyclin B. Cdc25B was found to be unstable (half-life < 30 min). Cdc25B, but not Cdc25C, immunoprecipitated from the extract directly activated the p34(cdc2)/cyclin B of cycloheximide-treated cells as well as that of nontreated cells, although Cdc25C immunoprecipitated from the extract of mitotic cells activated the p34(cdc2)/cyclin B within the extract of cycloheximide-treated cells. Our data suggest that Cdc25B made an initial activation of p34(cdc2)/cyclin B, which initiates mitosis through the activation of Cdc25C.  相似文献   

14.
15.
LYT1 is an essential gene for the growth and morphogenesis of Saccharomyces cerevisiae. A detailed characterization of mutants carrying the lyt1-1 allele showed that this mutation was recessive and pleiotropic, affecting both mitotic and meiotic functions. At the nonpermissive temperature of 37 degrees C, lyt1 haploid strains budded at a distal position (instead of an axial one, as in wild-type haploid strains) and underwent autolysis when the buds were almost the size of the mother cells. These mitotic alterations in cell stability and budding topology were dependent on growth and protein synthesis. Autolysis was prevented by inhibiting DNA synthesis (with hydroxyurea) or by blocking the assembly of microtubules (with benomyl), suggesting that loss of cell viability must occur at a fixed mitotic cycle stage after DNA synthesis and mitotic spindle assembly. On the other hand, lyt1-1/lyt1-1 diploids failed to sporulate at both 24 and 37 degrees C. Taking into account these characteristics, the lyt1 mutant could be considered a cdc-like mutant. By genetic transformation of an appropriate lyt1 strain with a genomic library, ligated to the multicopy vector YEp13, we isolated a gene capable of complementing mitotic alterations but not the meiotic defect. This was the sporulation-specific gene SPO12, which is expressed under the control of the locus MAT in meiosis and is also expressed in the mitotic cycle (V. Parkes and L. H. Johnston, Nucleic Acids Res. 20:5617-5623, 1992). A significant level of SPO12 mRNA can be detected when this gene is inserted in a multicopy plasmid.  相似文献   

16.
Phenotypical properties of single-gene reassortants of attenuated cold-adapted strain A/Leningrad/135/47/57 (H2N2) and strain A/PR8/34 virulent for laboratory animals were studied. Only the group of reassortants inheriting NS gene from cold-adapted virus was fully attenuated for various animals species, similarly as reassortants with 6/2 genomic formula containing all the 6 internal protein genes from strain A/Leningrad/134/47/57. Reassortant 25A-1 single-gene for NS was temperature-sensitive (ts) on mammalian cells but formed plaques at 40 degrees C on chicken kidney cells. Reassortants with genomic formula 6/2 were temperature-sensitive in all types of cells used. Reassortant 25A-1 could synthesize normal amounts of polypeptides in MDCK cells at 39 degrees C, whereas protein synthesis of reassortants with 6/2 genomic formula was noticeably reduced at this temperature. Hence, a similar level of attenuation of both reassortant groups appears to be due to various molecular mechanisms. Possible role of NS2 gene mutation in attenuation of strain A/Leningrad/134/47/57 and its reassortants is discussed.  相似文献   

17.
Vectors based on herpes simplex virus type 1 (HSV-1) show promise for gene transfer into mammalian cells because of their wide host range, efficient infection and ability to deliver genes to nondividing cells. Defective HSV-1 vectors, or amplicons, are plasmid vectors which are unable to propagate on their own but contain specific HSV-1 sequences that, in the presence of helper virus, support DNA replication and subsequent packaging into virus particles. We compared three replication-incompetent HSV-1 mutants (KOS strain 5dl1.2, strain 17 D30EBA, KOS strain d120) as the helper virus for packaging the prototype defective HSV-1 vector, pHSVlac, which uses the HSV-1 immediate-early (1E) 4/5 promoter to regulate expression of the Escherichia coli lacZ gene. Use of 5dl1.2, which contains a deletion in the IE 2 gene, consistently produced virus stocks that contained a high level of vector, undetectable levels of wild-type HSV-1 and a ratio of vector to helper greater than 1. Virus stocks prepared using 5dl1.2 were superior to those prepared using helper viruses that harbor a deletion in the IE 3 gene, either D30EBA or dl20, and supported more efficient gene transfer than possible with previously published procedures. Lactate dehydrogenase efflux assays in rat cortical cultures showed that 5dl1.2 was no more cytotoxic than either D30EBA or dl20, despite the expression of more viral genes. Rat cortical cultures infected with pHSVlac packaged with either 5dl1.2 or D30EBA were used to quantify the stability of vector expression. Our results show a decrease in the number of cells with detectable levels of beta-galactosidase to 30% of peak levels after one week, irrespective of the helper virus used. However, simultaneous superinfection with 5dl1.2, but not with either D30EBA or dl20, produced a transient increase in the number of cells expressing beta-galactosidase. Superinfection with 5dl1.2 at 9 days after gene transfer increased the number of cells expressing detectable beta-galactosidase back to peak levels, most probably because of reactivation of the IE 4/5 promoter in pHSVlac. These results thus provide the first quantitative demonstration of long-term persistence of defective HSV-1 vectors in neurons.  相似文献   

18.
The ability of a temperature-sensitive (ts) mutant of reovirus, ts261-b, to synthesize virus-specific RNAs and proteins during infection at the nonpermissive temperature (37 degrees C) was investigated. The relative amounts of the mutant virus-specific single-stranded (ss) RNA's and double-stranded (ds) RNA's synthesized in cells at 37 degrees C were 20 to 25% as much as those synthesized in the wild-type virus-infected cells. The 10 segments of the mutant ds RNAs and the three size classes of the ss RNAs were synthesized in the usual proportions. The methylation of the mutant viral mRNA's (ss RNAs) was not blocked at 37 degrees C in infected cells. A striking temperature-sensitive restricted function of the ts261-b mutant was expressed in the synthesis of the viral proteins. This study, which uses an in vitro protein-synthesizing system reconstituted with an endogenous polysomal fraction and a postribosomal supernatant from reovirus-infected cells, has demonstrated that the endogenous polysomes obtained from ts261-b mutant-infected cells at 37 degrees C are not active in the synthesis of the viral polypeptides of known molecular weights, and the amounts of the mutant viral polypeptides synthesized in vitro by these polysomes are 5 to 9% of those synthesized by the corresponding fraction from wild-type-infected cells. The impaired protein-synthesizing capacity of the mutant virus-specific polysomes can be restored during maintenance of the infected cells at 30 degrees C after shift-down from 37 degrees C. The in vitro synthesis of viral polypeptides of known size by the active endogenous polysomes derived from cells infected at the permissive temperature is accelerated by the addition of the postribosomal supernatant obtained from cells infected at the permissive temperature. The postribosomal supernatant from mutant-infected cells at 37 degrees C did not have a stimulatory effect, but rather, it inhibited in vitro viral protein synthesis.  相似文献   

19.
The U(L)15 gene of herpes simplex virus (HSV) is one of several genes required for the packaging of viral DNA into intranuclear B capsids to produce C capsids that become enveloped at the inner nuclear membrane. A rabbit antiserum directed against U(L)15-encoded protein recognized three proteins with apparent Mrs of 79,000, 80,000, and 83,000 in highly purified B capsids. The 83,000-Mr protein was detected in type C capsids and comigrated with the product of a U(L)15 cDNA transcribed and translated in vitro. The 83,000- and 80,000-Mr proteins were readily detected in purified virions. Inasmuch as (i) none of these proteins were detectable in capsids purified from cells infected with HSV-1(deltaU(L)15), a virus lacking an intact U(L)15 gene, and (ii) corresponding proteins in capsids purified from cells infected with a recombinant virus [HSV-1(R7244), containing a 20-codon tag at the 3' end of U(L)15] were decreased in electrophoretic mobility relative to the wild-type proteins, we conclude that the proteins with apparent Mrs of 83,000, 80,000, and 79,000 are products of U(L)15 with identical C termini. The 79,000-, 80,000-, and 83,000-Mr proteins remained associated with B capsids in the presence of 0.5 M guanidine HCl and remained detectable in capsids treated with 2.0 M guanidine HCl and lacking proteins associated with the capsid core. These data, therefore, indicate that U(L)15-encoded proteins are integral components of B capsids. Only the 83,000-Mr protein was detected in B capsids purified from cells infected with viruses lacking the U(L)6, U(L)17, or U(L)28 genes, which are required for DNA cleavage and packaging, suggesting that capsid association of the 80,000- and 79,000-Mr proteins requires intact cleavage and packaging machinery. These data, therefore, indicate that capsid association of the 80,000- and 79,000-Mr U(L)15-encoded proteins reflects a previously unrecognized step in the DNA cleavage and packaging reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号