首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 149 毫秒
1.
端元提取是高光谱遥感图像混合像元分解的关键步骤。传统线性端元提取方法忽略了像元内地物的非线性混合因素,制约了混合像元分解精度的提升。针对高光谱图像数据的非线性结构,提出一种基于测地线距离的正交投影端元提取算法,将测地线距离引入端元单体提取过程,利用正交投影方法逐个提取端元。为了降低测地线距离计算量,在端元提取前先利用自动目标生成方法和无约束最小二乘法对原始高光谱数据进行数据约减。模拟和真实高光谱图像实验表明,该方法能够表征光谱数据中非线性因素,端元提取结果优于传统自动目标生成端元提取方法。  相似文献   

2.
由于多重反射和散射,高光谱图像中的混合像元实际上是非线性光谱混合。传统的端元提取算法是以线性光谱混合模型为基础,因此提取精度不高。针对高光谱图像的非线性结构,提出了基于图像欧氏距离非线性降维的高光谱遥感图像端元提取方法。该方法结合高光谱数据的物理特性,将图像欧氏距离引入拉普拉斯特征映射进行非线性降维以更好地去除高光谱数据集中冗余的空间信息和光谱维度信息,然后对降维后的数据利用寻找最大单形体体积的方法提取端元。真实高光谱数据实验表明,提出的方法对高光谱图像端元提取具有良好的效果,性能优于线性降维的主成份分析算法和原始的拉普拉斯特征映射算法。  相似文献   

3.
《红外技术》2018,(4):362-368
在保证分类结果清晰、准确的前提下,为了提高分类执行效率,本文基于图形处理器(graphic processing unit,GPU)及并行优化,提出一种基于归一化光谱向量的高光谱图像实时性非监督分类方法。利用高光谱图像的空间一致性有效提高分类精度,同时,利用归一化光谱向量简化了像元间相似性的计算公式,统一了图像内像元处理方式,并利用GPU并行技术有效提高计算速度。首先,利用GPU并行处理方法计算空间相邻像元间光谱向量相似性,根据高斯拟合取得安全阈值;然后利用光谱角作为像元光谱相似测度,将相似像元划为同质区;最后以同质区内各像元平均光谱向量表述同质区光谱特征,根据安全阈值合并相似的同质区完成分类。用AVIRIS数据评估了该方法性能。本文的理论分析和实验结果显示,与现有非监督分类方法相比,该方法分类精度更高,同时,算法本身运行速度更快。  相似文献   

4.
《红外技术》2015,(10):836-841
针对高光谱图像混合像元影响异常检测效果的问题,提出了一种基于端元提取的异常检测算法。该算法采用小波分解,将原始高光谱图像分解为高频信息图像和低频信息图像,舍弃低频信息图像,只利用高频信息图像,从而抑制了背景,突出了目标;然后使用正交子空间投影(OSP)方法提取图像的端元光谱;最后根据提取的端元光谱,采用光谱角匹配(SAM)技术完成高光谱图像的异常检测。为了验证本文方法的有效性,利用AVIRIS高光谱数据进行了仿真实验,取得了较好的检测效果。与其他算法相比,结果表明,本文算法的检测性能明显优于传统算法,既降低了虚警率,又大大缩短了计算时间,适用于实时的高光谱图像异常目标检测。  相似文献   

5.
严阳  华文深  刘恂  崔子浩 《激光技术》2018,42(5):692-698
高光谱图像的空间分辨率较低,导致大量混合像元存在于高光谱图像中。混合像元的存在是使高光谱图像目标分类准确率降低的主要原因之一。高光谱像元解混在高光谱遥感图像处理中具有非常重要的意义。高光谱像元解混主要分为线性和非线性光谱解混两种方法,研究最广泛的是线性光谱解混。归纳了线性光谱解混的两个步骤:(1)提取纯净像元中地物的光谱信号,即提取端元,这是关键步骤;(2)利用端元的加权线性组合对混合像元进行光谱解混,即丰度反演。简述了端元提取及丰度反演研究的主要进展,介绍了端元提取的几种典型算法。通过归纳、对比和分析,总结了不同端元提取方法的特点,并对高光谱解混的研究前景进行了展望。  相似文献   

6.
陈欣  粘永健  王忠良 《红外技术》2019,41(8):758-763
为了实现高光谱图像的有效压缩采样与重构,对分布式压缩采样的高光谱数据应用线性混合模型进行重构。首先,在图像采集阶段,针对高光谱图像的空谱特性,应用分布式压缩采样策略对高光谱数据进行采集;在数据重构阶段,应用高光谱图像的线性混合模型假设,先对压缩数据进行端元数目的估计,再利用估计的端元数来估计丰度矩阵,根据端元特征信号的稀疏性质提取端元矩阵,从而重构出原始的高光谱数据,抛弃了压缩感知重构算法中高计算复杂性的欠定问题求解。实验结果表明:在压缩采样数据为总数据的20%时,重构的平均信噪比比压缩投影主成分分析算法提高了15 dB以上,同时该方法还便于获得端元和丰度信息。所设计的压缩感知方案采样方式简单,重构速度快、精度高,可应用于星载或机载的高光谱压缩感知成像。  相似文献   

7.
《红外技术》2016,(11):947-952
端元提取是高光谱混合像元分解的重要环节。为了提取高光谱图像的端元,本文基于线性表示理论与凸锥模型理论,论证了:与单体共面的单体外向量被单体的顶点向量线性表示时,表示系数必有负值,从而给出了理想情形下判别端元的充要条件,并在此基础上,针对非理想情形提出了一种提取端元的迭代算法。实验结果表明,算法提取端元的精度优于VCA算法、效率高于搜索算法,算法稳定性好,对噪声的敏感性低。  相似文献   

8.
针对现有的高光谱多光谱图像融合算法解空间较大、未考虑高光谱数据的物理意义以及存在局部最优的问题,提出了一种基于单形体最小体积约束的耦合非负矩阵分解的高光谱与多光谱图像融合算法(MVC-CNMF)。该算法在混合像元解混的过程中,考虑图像的物理意义,加入了端元单形体最小体积约束。由仿真结果可以看出,该算法能有效地克服现有融合算法中的缺陷,实现了高光谱与多光谱图像的端元与丰度的精确匹配,获得高空间分辨率的融合图像,尤其适用于端元数目较多的高光谱图像。  相似文献   

9.
针对传统单端元提取方法不能描述端元变异、限制混合像元分解精度的缺点,提出一种基于像元纯净指数的多端元提取算法(Multiple Endmember Extraction Algorithm Based on Pixel Purity Index,PPI-MEE)。首先将图像划分为不重叠的图像块,并分别利用改进的PPI算法提取候选端元集,然后利用候选端元的邻域像元光谱信息对候选端元进行优化和精选。最后,对优化精选后的端元集分类得到每类地物的多端元光谱集。仿真数据和真实高光谱数据的实验结果表明,提出的多端元提取策略具有表征遥感图像中端元光谱变异的能力,能够提高端元提取精度和混合像元分解精度。  相似文献   

10.
潘斌  张宁  史振威  谢少彪 《红外与激光工程》2018,47(8):823001-0823001(5)
提出了一种基于线性混合模型的高光谱图像绿藻面积估计算法。利用端元提取算法,自动获取图像中绿藻端元的光谱曲线,根据得到的端元及原始图像,通过全约束最小二乘算法,求得绿藻端元的丰度图,丰度图作为绿藻面积的估计结果。算法能够有效克服由于高光谱图像分辨率不足造成的绿藻面积估计不准确的问题,实现亚像素水平的绿藻面积估计。利用2013年6月29日获取的GOCI传感器获取的8波段光谱图像展开实验,计算得到当日绿藻覆盖面积为321 km2,与HJ-1B卫星的实测结果高度接近,相比于NDVI等传统算法具有明显优势。方法为绿藻灾害预警和监测提供了一条新的解决思路和技术途径,具有较高的应用价值。  相似文献   

11.
高光谱遥感图像识别技术在伪装目标识别方面具有很大的应用前景。针对高光谱遥感图像中的混合像元和光谱变异问题,提出基于高光谱解混技术的伪装目标识别方法。该方法采用扩展线性混合模型表征高光谱图像中的光谱变异问题,利用超像元分割技术将原始高光谱图像转换为粗细多尺度特征图,对超像元丰度矩阵附加8-邻域空间加权与行约束,以降低噪声和奇异点像元的影响。针对伪装目标空间分布稀疏的特点,在模型中增加丰度矩阵的截断加权核范数作为正则化项,以提高算法精度。实验结果表明提出的方法具有良好的抗噪性和较高的解混精度,可以有效提高伪装目标识别精度。  相似文献   

12.
基于Fisher判别零空间的高光谱图像混合像元分解   总被引:1,自引:0,他引:1  
金晶  王斌  张立明 《红外》2010,31(6):23-30
传统的光谱混合分析方法假设每个端元必须具有完全稳定的光谱特性,而在实际问题中同类地物的端元光谱往 往存在着差异。为了有效地抑制同物异谱对混合像元分解的影响,本文提出一种基于Fisher判别零空间的高光谱遥感图像混合像元分 解算法。Fisher判别零空间方法通过对高光谱图像数据进行线性变换,使得变换后的数据中同一端元内的光谱差异减小为零,而不同 端元间的光谱差异尽可能地增大。利用变换后的光谱数据对混合像元进行分解就可以较大程度地减少同物异谱现象对分解结果的影响。 对模拟高光谱图像数据以及Indiana地区和Cuprite地区的实际AVIRIS数据的解混结果表明,用Fisher判别零空间方法处理混合像元分 解问题,可以得到较高的分解精度。  相似文献   

13.
高光谱遥感图像端元提取的零空间光谱投影算法   总被引:3,自引:0,他引:3  
端元提取技术是高光谱遥感图像光谱解混的关键.在线性光谱混合分析中,首先引入了高光谱遥感图像经过零空间光谱投影后具有单形体的凸不变性.在此基础上,提出了零空间光谱投影算法,通过设计各种度量和准则,制定不同的单次端元提取策略,灵活地实现算法.经过证明,零空间光谱投影算法是对基于子空间投影距离算法(包括零空间投影距离算法与经典正交子空间投影算法)的进一步延伸,提供了更多的端元提取策略.实验结果表明,零空间光谱投影算法在模拟图像以及真实高光谱遥感图像中都能够有效地提取出图像中的各种端元.  相似文献   

14.
传统的高光谱图像混合像元分解技术包括端元提取和估计每个端元的混合比例.虽然很多模型都能得到可以接受的解混结果,但是一些未知端元的存在使得结果在包含未知端元的像素点处出现偏差.因此,提出了一种基于支持向量数据描述的高光谱图像混合像元分解算法.首先高光谱图像数据被分成类内和类外两部分,类内是完全由已知端元数据混合的像素点,而类外数据是包含未知端元的像素点.两类数据交界处被认为是已知端元和未知端元混合的数据.然后再对这些像素点进行混合像元分解,分别对仿真数据和真实高光谱图像进行实验.结果表明该算法可以有效地解决因存在未知端元对解混精度的影响,而且能给出未知端元的解混分量.该方法的解混结果几乎不受未知端元的影响,优于直接解混结果  相似文献   

15.
唐晓燕  高昆  刘莹  倪国强 《激光与红外》2014,44(9):1050-1054
针对高光谱图像中端元的可变性和光谱的非线性混合特性,提出一种基于端元优化的非线性光谱解混算法,通过加入阴影端元对混合像元的端元集进行优化,对优化的端元子集采用基于分层贝叶斯模型的双线性光谱分解算法进行光谱分解。模拟数据和真实数据实验表明,提出的算法能很好地解决高光谱图像中存在的阴影效应,分解效果优于FCLS和GBM算法。  相似文献   

16.
龚文娟  董安国  韩雪 《激光技术》2017,41(4):507-510
为了去除高光谱影像的数据冗余,提高高光谱影像处理的精度和效率,提出了一种基于波段指数的高光谱影像波段选择算法。采用小波变换对高光谱图像数据进行去噪处理,依据联合偏度-峰度指数将波段进行分组,再根据波段指数的大小确定相对较小指数的波段,并将其作为冗余波段进行去除,从而得到最小波段集。结果表明,利用该波段集和全波段所选的端元是一致的,在不影响端元提取的前提下,最大程度地去除了冗余波段,而且该波段集与全波段的分类精度较接近。该算法在波段选择过程中具有可行性与有效性,为降低高光谱影像维数提供了一种帮助。  相似文献   

17.
基于代数余子式的N-FINDR快速端元提取算法   总被引:2,自引:0,他引:2  
基于高光谱图像特征空间几何分布的端元提取方法通常可分为投影类算法和单形体体积最大类算法,通常前者精度不好,后者计算复杂度较高。该文提出一种基于代数余子式的快速N-FINDR端元提取算法(FCA),该算法融合了投影类算法速度快和单形体体积最大类算法精度高的优势,利用像元投影到端元矩阵元素的代数余子式构成的向量上的方法,寻找最大体积的单形体。此外,该算法在端元搜索方面较为灵活,每次迭代都可用纯度更高的像元代替已有端元,因此能保证用该端元确定的单形体,可以将特征空间中全部像元包含在内。仿真和实际高光谱数据实验结果表明,该文算法在精准提取出端元的同时,收敛速度非常快。  相似文献   

18.
In recent years, hyperspectral image super-resolution has attracted the attention of many researchers and has become a hot topic in the field of computer vision. However, it is difficult to obtain high-resolution images due to imaging hardware devices. At present, many existing hyperspectral image super-resolution methods have not achieved good results. In this paper, we propose a hyperspectral image super-resolution method combining with deep residual convolutional neural network (DRCNN) and spectral unmixing. Firstly, the spatial resolution of the image is enhanced by learning a priori knowledge of natural images. The DRCNN reconstructs high spatial resolution hyperspectral images by concatenating multiple residual blocks, each containing two convolutional layers. Secondly, the spectral features of low-resolution and high-resolution hyperspectral images are linked by spectral unmixing. This approach aims to obtain the endmember matrix and the abundance matrix. The final reconstruction result is obtained by multiplying the endmember matrix and the abundance matrix. In addition, in order to improve the visual effect of the reconstructed image, the total variation regularity is used to impose constraints on the abundance matrix to enhance the relationship between the pixels. The experimental results of remote sensing data based on ground facts show that the proposed method has good performance and preserves spatial information and spectral information without the need for auxiliary images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号