首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 79 毫秒
1.
车载人员佩戴安全带行为的检测对于人的生命安全保障具有重要作用。针对目前车内复杂环境下车载人员佩戴安全带检测精度不高的问题,提出一种基于改进的YOLOv5s(You Only Look Once v5s)车载人员佩戴安全带的检测方法。该检测方法将YOLOv5s作为基础网络,在此基础上进行改进。为改善深度模型对特征信息的提取能力,采用RFB(Receptive Field Block)模块增大网络的感受野,并利用RFB模块多分支结构获得混合的感受野;加入ECA(Efficient Channel Attention)注意力通道模块,使得整个网络更加专注特征信息的提取;将原YOLOv5s的损失函数替换为EIOU,进一步提高网络对安全带的检测精度。经过实验结果表面,改进后网络与原YOLOv5s网络相比,其平均精度均值(mAP,mean Average Precision)提高了2.2%,查准率(Precision)提升了5.1%。改进后的网络具有良好的提升效果,表明了该方法的有效性。  相似文献   

2.
针对炼焦厂烟火排放全天候环保监测的要求,提出了基于改进YOLOv5s的焦炉烟火识别算法;该算法以YOLOv5s为基础网络,在主干网络Backbone中添加CBAM注意力机制模块,使网络更加关注重要的特征,提升目标检测的准确率;新增FReLU激活函数代替SiLU激活函数,提高激活空间的灵敏度,改善烟火图像视觉任务;在自建数据集中烟、火样本标签基础上,增加灯光标签来解决强灯光对火焰识别的干扰,并通过分流训练、检测的方式来解决昼夜场景的烟火检测问题;在自建数据集上做对比实验,更换激活函数后,联合CBAM模块的YOLOv5s模型效果最佳;实验结果显示,与原始YOLOv5s模型相比,在白天场景下的烟火识别mAP值提升了6.7%,在夜间场景下的烟火识别mAP值高达97.4%。  相似文献   

3.
在自动驾驶应用场景下,将YOLOv5应用于目标检测中,性能较之前版本有明显的提升,但在高运行速度情况下检测精度仍不够高,本文提出一种基于改进YOLOv5的车辆端目标检测方法.为解决训练不同数据集时需手动设计初始锚框大小,引入自适应锚框计算.在主干网络(backbone)添加压缩与激励模块(squeeze and excitation,SE),筛选针对通道的特征信息,提升特征表达能力.为了提升检测不同大小物体时的精度,将注意力机制与检测网络融合,把卷积注意力模块(convolutional block attention module, CBAM)与Neck部分融合,使模型在检测不同大小的物体时能关注重要的特征,提升特征提取能力.在主干网络中使用空间金字塔池化SPP模块,使得模型输入可以输入任意图像高宽比和大小.在激活函数方面,进行卷积操作后使用Hardswish激活函数,应用于整个网络模型.在损失函数方面,使用CIoU作为检测框回归的损失函数,改善定位精度低和训练过程中目标检测框回归速度慢的问题.实验结果表明,改进后的检测模型在KITTI 2D数据集上测试,目标检测的精确率(preci...  相似文献   

4.
针对传统非机动车头盔检测算法目标漏检率高,在密集骑行场景下检测精度低等问题,提出了一种基于改进YOLOv5s的非机动车头盔佩戴检测算法。该算法采用Kmeans++算法聚类生成锚框,增强网络的稳定性;接着使用轻量级通用上采样算子(CARAFE)对高阶特征图进行上采样操作,增大感受野,充分利用特征语义信息;同时在Backbone模块和Head端前引入坐标注意力机制(coordinate attention,CA),在保证轻量化的同时,进一步提高算法的检测精度;最后利用DIo U-NMS对目标检测模型的输出后处理,降低密集场景下模型的漏检率,改善遮挡物体的检测能力。与YOLOv5s算法相比,改进后的算法精确度、召回率、平均精度分别提升了2.3%、1.5%和1.5%,能够实现对非机动车头盔佩戴的高精度检测。  相似文献   

5.
李维娜  李爽 《软件》2023,(3):179-183
现有的YOLOv5模型无法精确检测出进入复杂施工现场内的人员佩戴安全帽问题,本文提出了一种基于YOLOv5的安全帽检测算法。模型的具体改进方法为:在主干网络中新增了一个小目标层P2和3-D注意力机制SimAM,提升算法的特征提取能力便于能够更容易检测出小目标;将边框损失函数CIoU_Loss改为SIo U_Loss,以提升对小目标检测的训练速度与精度,从而得到一种新的安全帽佩戴检测模型。实验结果显示,修改后的YOLOv5s算法大大提高了复杂工程现场安全帽检测的准确率,较原有的算法提高了1.4个百分点,mAP值达到了95.5%。  相似文献   

6.
针对目前疼痛表情识别模型结构复杂、计算量大、检测速度慢、不易移植等问题,提出一种针对移动端设备的轻量化人脸疼痛表情识别算法。首先引入GhostNet网络结构中的Ghost模块卷积,压缩模型的参数量,减小计算开销;之后用改进的FReLu激活函数替换SiLu激活函数,提升识别精度与检测效率;最后引入CA注意力机制,对人脸疼痛表情特征区域增加关注度,提升算法对疼痛表情模型的识别精度。实验结果表明,改进后的模型对疼痛表情识别精度达到96.9%;每张图片检测时间为53 ms,相比YOLOv5s模型用时缩短18%;模型大小相比YOLOv5s下降41.3%。适用于移动端设备的实时疼痛表情识别。  相似文献   

7.
针对目前目标检测模型结构复杂、计算量大、检测准确率低等问题,提出在工业场景下基于改进型YOLOv5的安全帽佩戴算法。在主干网络引入轻量型网络ShuffleNetv2,保留Focus结构和ShuffleNetv2共同组成主干网络,降低网络的计算量和参数量;在C3模块中引入Swin Transformer Block,得到C3STB模块,替换Neck部分原有的C3模块;设计了CBAM_H注意力机制,并将其嵌入Neck网络中,获取全局上下文信息,提高模型检测准确率。自建数据集并进行实验,实验结果表明,改进后的YOLOv5模型的参数量由6.14×106压缩到8.9×105,计算量由1.64×1010压缩到6.2×109,mAP由0.899上升到0.908,优于原模型性能。  相似文献   

8.
本文介绍了一种新的基于YOLOv5s的目标检测方法,旨在弥补当前主流检测方法在小目标安全帽佩戴检测方面的不足,提高检测精度和避免漏检.首先增加了一个小目标检测层,增加对小目标安全帽的检测精度;其次引入ShuffleAttention注意力机制,本文将ShuffleAttention的分组数由原来的64组减少为16组,更加有利于模型对深浅、大小特征的全局提取;最后增加SA-BiFPN网络结构,进行双向的多尺度特征融合,提取更加有效的特征信息.实验表明,和原YOLOv5s算法相比,改善后的算法平均精确率提升了1.7%,达到了92.5%,其中佩戴安全帽和未佩戴安全帽的平均精度分别提升了1.9%和1.4%.本文与其他目标检测算法进行对比测试,实验结果表明SAB-YOLOv5s算法模型仅比原始YOLOv5s算法模型增大了1.5M,小于其他算法模型,提高了目标检测的平均精度,减少了小目标检测中漏检、误检的情况,实现了准确且轻量级的安全帽佩戴检测.  相似文献   

9.
张锦  屈佩琪  孙程  罗蒙 《计算机应用》2022,42(4):1292-1300
针对现有安全帽佩戴检测干扰性强、检测精度低等问题,提出一种基于改进YOLOv5的安全帽检测新算法。首先,针对安全帽尺寸不一的问题,使用K-Means++算法重新设计先验框尺寸并将其匹配到相应的特征层;其次,在特征提取网络中引入多光谱通道注意力模块,使网络能够自主学习每个通道的权重,增强特征间的信息传播,从而加强网络对前景和背景的辨别能力;最后,在训练迭代过程中随机输入不同尺寸的图像,以此增强算法的泛化能力。实验结果表明,在自制安全帽佩戴检测数据集上,所提算法的均值平均精度(mAP)达到96.0%,而对佩戴安全帽的工人的平均精度(AP)达到96.7%,对未佩戴安全帽的工人的AP达到95.2%,相较于YOLOv5算法,该算法对佩戴安全帽的平均检测准确率提升了3.4个百分点,满足施工场景下安全帽佩戴检测的准确率要求。  相似文献   

10.
近年来,随着我国制造业的快速发展,铝材的需求量日益增长。然而,铝材在生产过程中会出现不同类型的缺陷,这些缺陷影响铝材的质量、美观度和使用寿命。为实现快速、准确地识别铝片表面缺陷,基于YOLOv5网络提出了一种改进的铝片表面缺陷检测方法。为了提高检测模型的特征提取和特征融合能力,引入注意力机制CBAM模块,协助模型关注和提取更有用的特征信息。在回归损失方面,采用Alpha-IoU函数来替代原来的CIOU损失函数,降低预测框的回归损失,提升定位精度。通过实验验证,该方法能够有效识别铝片表面的缺陷类型和位置,具有较高的实用价值。  相似文献   

11.
发电厂厂区内违规吸烟易导致火灾、爆炸等事故,会带来巨大损失;针对电厂内人员违规吸烟行为检测精度不高的问题,提出一种基于改进YOLOv5s(You Only Look Once v5s)的电厂内人员违规吸烟检测方法;该方法以YOLOv5s网络为基础,将YOLOv5s网络C3模块Bottleneck中的3×3卷积替换为多头自注意力层以提高算法的学习能力;接着在网络中添加ECA(Efficient Channel Attention)注意力模块,让网络更加关注待检测目标;同时将YOLOv5s网络的损失函数替换为SIoU(Scylla Intersection over Union),进一步提高算法的检测精度;最后采用加权双向特征金字塔网络(BiFPN,Bidirectional Feature Pyramid Network)代替原先YOLOv5s的特征金字塔网络,快速进行多尺度特征融合;实验结果表明,改进后算法吸烟行为的检测精度为89.3%,与改进前算法相比平均精度均值(mAP,mean Average Precision)提高了2.2%,检测效果显著提升,具有较高应用价值。  相似文献   

12.
在工业施工过程中, 工人安全已成为一个日益重要的问题, 佩戴安全绳等安全装备是保护工人在高处工作时生命安全的重要措施;在现代化生产施工过程中, 通过使用监控摄像设备结合人工智能算法的方式来检测工人佩戴安全绳等设备越发普遍, 但安全绳由于细长、形状多变以及环境变化等因素较为难以准确识别;为解决以上问题, 并确保能够在不同环境下能够准确识别安全绳, 现提出一种使用YOLOv5目标检测算法, 首先通过改进的FasterNet模块进行上下文信息提取, 在Neck网络中使用改进的多维动态卷积保留更多特征信息, 使用WIoU_Loss损失函数来提高定位精度, 在训练过程中使用动态调整学习率的策略;实验结果表明, 改进后的算法在降低计算复杂度的情况下提高了3.0%的检测精度, mAP@0.5提高了4.3%, 经过在实际场景应用, 满足项目对实时检测精度及速度的要求。  相似文献   

13.
本文针对图像中小目标难以检测的问题,提出了一种基于YOLOv5的改进模型.在主干网络中,加入CBAM注意力模块增强网络特征提取能力;在颈部网络部分,使用BiFPN结构替换PANet结构,强化底层特征利用;在检测头部分,增加高分辨率检测头,改善对于微小目标的检测能力.本文算法在人脸瑕疵数据集和无人机数据集VisDrone2019两份数据集上均进行了多次对比实验,结果表明本文算法可以有效地检测小目标.  相似文献   

14.
针对白细胞数据样本少、类间差别小及目标尺寸小导致的检测精度低、效果不佳等问题,提出一种基于改进YOLOv5的白细胞检测算法YOLOv5-CHE.在主干特征提取网络的卷积层中添加坐标注意力机制,以提升算法的特征提取能力;使用四尺度特征检测,重新获取锚点框,增加浅层检测尺度,来提高小目标的识别精度;改变边框回归损失函数,以...  相似文献   

15.
针对移动端目标检测算法需要模型参数量与计算量更少、推理速度更快和检测效果更好以及目标检测算法对于小目标误检、漏检及特征提取能力不足等问题, 提出一种基于YOLOv5改进的轻量化目标检测算法. 该算法使用轻量级网络MobileNetV2作为目标检测算法的骨干网络降低模型的参数量与计算量, 通过使用深度可分离卷积结合大卷积核的思想降低网络的计算量与参数量, 并提升了小目标的检测精度. 使用GhostConv来替换部分普通卷积, 进一步降低参数量与计算量. 本文算法在VOC竞赛数据集, COCO竞赛数据集两份数据集上均进行了多次对比实验, 结果表明本文算法相比于其他模型参数量更小、计算量更小、推理速度更快以及检测精度更高.  相似文献   

16.
桥梁裂缝人工检测耗时费力、安全性不高,为了高效、准确、无接触地对桥梁裂缝进行识别检测,提出一种基于改进YOLOv5的桥梁裂缝检测模型YOLOv5-SA;该方法在YOLOv5s模型的基础上,首先对收集的数据集利用几何变换、光学变换等操作进行数据增强;其次将融合视觉注意力机制(SKNet)添加到Head部分来提高模型对裂缝特征的表示能力;最后在金字塔特征表示法(FPN)的基础上利用自适应空间特征融合(ASFF)模块加强网络特征融合能力,增加对桥梁裂缝小目标的检测;结果表明:改进后的模型相对于YOLOv5s模型能更好地抑制非关键信息,减少背景中的无效信息干扰,提高桥梁裂缝目标检测精准度;改进后的YOLOv5-SA模型准确率达到88.1%,与原YOLOv5s模型相比提高了1.6%;平均精度均值mAP 0.5和mAP 0.5~0.95分别达到90.0%、62.1%,相比而言分别提高了2.2%、2.4%;与其他桥梁裂缝检测相关方法(Faster-RCNN、YOLOv4tiny)相比,提出的YOLOv5-SA模型也具有相当或更好的检测性能;由此可见改进后的模型能更高效地检测复杂环境下的桥梁裂缝,可以...  相似文献   

17.
Safety helmet-wearing detection is an essential part of the intelligent monitoring system. To improve the speed and accuracy of detection, especially small targets and occluded objects, it presents a novel and efficient detector model. The underlying core algorithm of this model adopts the YOLOv5 (You Only Look Once version 5) network with the best comprehensive detection performance. It is improved by adding an attention mechanism, a CIoU (Complete Intersection Over Union) Loss function, and the Mish activation function. First, it applies the attention mechanism in the feature extraction. The network can learn the weight of each channel independently and enhance the information dissemination between features. Second, it adopts CIoU loss function to achieve accurate bounding box regression. Third, it utilizes Mish activation function to improve detection accuracy and generalization ability. It builds a safety helmet-wearing detection data set containing more than 10,000 images collected from the Internet for preprocessing. On the self-made helmet wearing test data set, the average accuracy of the helmet detection of the proposed algorithm is 96.7%, which is 1.9% higher than that of the YOLOv5 algorithm. It meets the accuracy requirements of the helmet-wearing detection under construction scenarios.  相似文献   

18.
为了降低服装目标检测模型的参数量和浮点型计算量, 提出一种改进的轻量级服装目标检测模型——G-YOLOv5s. 首先使用Ghost卷积重构YOLOv5s的主干网络; 然后使用DeepFashion2数据集中的部分数据进行模型训练和验证; 最后将训练好的模型用于服装图像的目标检测. 实验结果表明, G-YOLOv5s的mAP达到71.7%, 模型体积为9.09 MB, 浮点型计算量为9.8 G FLOPs, 与改进前的YOLOv5s网络相比, 模型体积压缩了34.8%, 计算量减少了41.3%, 精度仅下降1.3%, 方便部署在资源有限的设备中使用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号