首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
原位TiB2亚微米颗粒增强铝基复合材料的高温蠕变性能   总被引:4,自引:0,他引:4  
运用盐-金属反应法制备了亚微米TiB2颗粒增强铝基复合材料(TiB2/AC8A).TiB2颗粒通过钛盐和硼盐与铝合金反应原位生成.对复合材料进行了显微组织观察和高温蠕变性能实验.原位TiB2颗粒的尺寸约为0.5μm,近似呈球形。TiB2/AC8A复合材料具有优异的高温蠕变性能。10ω/%TiB2原位颗粒(~0.5μm)增强AC8A复合材料的蠕变抗力比10φ/%SiCp(1.7μm)外加颗粒增强AI复合材料至少要高两个数最级。10ω/%TiB2/AC8A复合材料表现出高的名义应力指数(11.7~12.5)和名义激活能(265kJ/mol),其稳态蠕变数据能够用廊力指数为8的亚结构不变模型和门槛应力来解释。TiB2/AC8A复合材料的蠕变断裂行为符合Monkman-Grant关系式。  相似文献   

2.
原位TiC颗粒增强Fe—Cr—Ni基复合材料的高温蠕变行为   总被引:4,自引:0,他引:4  
在973-1123K和40-160MPa条件下研究了含5%,10%,16%(体积分数,下同)原位TiC颗粒增强的Fe-26Cr-14Ni基复合材料的高温蠕变性能,原位TiC颗粒明显改善了Fe-26Cr-14Ni基复合材料的高温蠕变性,含5%和10%TiC复合材料的抗蠕变能力比基础合金增强,随着TiC颗粒体积分数的增高,复合材料的蠕变速率降而蠕变激活能和临界应力提高,TEM显微组织观察表明,复合材料的蠕变主要是以局部位错攀移机制进行的,因此,所有蠕变速率可以由应力指数为5的指数方程经归一化处理得到。  相似文献   

3.
以放电等离子烧结(TiB_(2)+TiB)增强Ti_(2)AlNb基复合材料为初始材料,在Gleeble-3800热模拟实验机上开展了(TiB_(2)+TiB)/Ti-22Al-25Nb复合材料的热压缩变形实验,研究了变形温度1060~1150℃、应变速率0.05~5 s^(-1)范围内复合材料的热变形行为。通过对流变应力-应变数据分析,构建了复合材料在B2单相区内的本构方程,分析了不同Zener-Hollomon(Z)参数下复合材料的组织演变规律。结果表明:(Ti B_(2)+TiB)/Ti-22Al-25Nb复合材料的峰值应力随变形温度的升高和应变速率的降低而降低,压缩曲线存在不连续屈服现象。Z值对复合材料的组织演变和变形机制均有重要影响。当ln Z值处于较高水平(35.88)时,复合材料出现局部塑性流动变形失稳区,动态再结晶程度较低,再结晶晶粒平均尺寸为3.82μm,增强颗粒粒径平均尺寸为6.93μm。当ln Z值处于较低水平(29.11~31.28)时,复合材料心部区域均发生完全动态再结晶。随着Z值降低,当ln Z为29.11时,动态再结晶晶粒长大,其平均尺寸增至9.16μm,并且由于B元素扩散的加快,促进了烧结残余TiB_(2)颗粒向Ti B晶须(Ti Bw)转变,原位反应更加充分,增强颗粒平均尺寸减小至2.77μm,TiBw的团簇现象明显减弱。  相似文献   

4.
胡勇  闫洪  陈国香 《铸造》2009,58(11)
采用原位合成法制备了Mg_2Si颗粒增强AM60镁基复合材料,对材料进行了高温蠕变试验.结果表明,随Mg_2Si含量的增加,复合材料的抗高温蠕变性能提高.在相同应力下,随着温度的升高,材料的抗高温蠕变性能变差,稳态蠕变速率增加.  相似文献   

5.
采用K2TiF6和KBF4混合盐原位反应法制备TiB2/Al-7Si复合材料,利用XRD、SEM、金相显微镜、HV硬度测试和磨损实验等方法研究了Mg对复合材料的微观组织和力学性能的影响.结果表明:反应生成的TiB2颗粒平均尺寸约为0.5 μm,材料的硬度和耐磨性随着TiB2含量的增加而提高;添加1.5%Mg(质量分数)元素可明显细化TiB2颗粒,且使其分布更加均匀,增强TiB2颗粒的弥散强化和细晶强化效果,复合材料的硬度和耐磨性显著改善;过量的Mg元素(3%)会造成TiB2颗粒细化效果的下降,但其硬度和耐磨性能继续得到改善.  相似文献   

6.
通过XRD、SEM、TEM等表征手段研究(TiB+TiC)/Ti1100复合材料的铸态显微组织、高温拉伸性能和高温蠕变行为。结果表明:(TiB+TiC)/Ti1100复合材料具有典型的网篮组织,通过B_(4)C、C和Ti的反应原位生成了晶须状的Ti B和等轴状的TiC。随着温度的升高,(TiB+TiC)/Ti1100复合材料的极限抗拉强度从766 MPa降低至511 MPa。在实验范围内,(TiB+TiC)/Ti1100复合材料的稳态蠕变速率随温度和应力的升高而降低。根据对相关数据的计算,(TiB+TiC)/Ti1100复合材料的应力指数和激活能分别为3.75和269.5 kJ/mol。结合蠕变后的变形区域组织,可以确定该材料的蠕变过程主要受位错滑移控制。α/β界面是位错滑移的主要障碍,同时TiB、TiC和硅化物也阻碍着位错的运动。β-Ti的大量溶解导致硅化物的形成,并降低了α/β界面对位错的阻碍效果。增强相特别是TiB可以通过承载作用,降低基体中的应力集中从而抑制β-Ti的溶解。  相似文献   

7.
采用粉末冶金工艺,分别制备了单一粒径TiB_2颗粒和混杂粒径TiB_2颗粒的TiB_2/Cu复合材料,研究了TiB_2颗粒混杂(2μm+50μm)增强对TiB_2/Cu复合材料微观组织和性能的影响。结果表明:在TiB_2颗粒总含量一定的条件下,与单一粒径TiB_2颗粒增强TiB_2/Cu复合材料相比,TiB_2颗粒混杂增强TiB_2/Cu复合材料的综合性能明显提高;当2μm与50μm TiB_2颗粒混杂配比为1∶2时,TiB_2/Cu复合材料综合性能最佳,硬度和导电率分别为69 HB和85.3%·IACS,相对于2μm单一粒径TiB_2颗粒增强TiB_2/Cu复合材料的硬度和导电率分别提高了12.2%和4.8%;TiB_2颗粒混杂粒径TiB_2/Cu复合材料的增强作用来源于获得了均匀致密的微观组织,不同粒径TiB_2颗粒在铜基体中更加弥散分布,使得混杂粒径的TiB_2颗粒协同增强铜基体作用更加明显,综合性能明显提高。  相似文献   

8.
采用机械合金化和热压烧结相结合的方法制备出原位TiB_2颗粒和TiB晶须混杂增强的铜基复合材料,利用XRD、OM、SEM、TEM研究了复合材料的微观组织,分析了热压烧结过程中的原位反应机理及微观组织对复合材料硬度、导电率及致密度的影响规律。结果表明:原位反应过程为Cu和Ti原始粉末在800℃开始反应生成Cu3Ti中间相,在850℃时达到Cu3Ti中间相的熔点并在基体中形成液相微区,然后B原子扩散至该液相微区,在继续加热过程中原位析出硼化钛增强相。TiB晶须含量相对较多的复合材料具有较高的硬度,Ti B2颗粒含量相对较多的复合材料具有较高的导电率,TiB晶须和TiB_2颗粒混杂增强的铜基复合材料则同时兼备了以上2种复合材料的性能优势,其综合性能得到优化。所得烧结态3%(TiB_2-TiB)/Cu混杂增强复合材料的硬度和导电率分别达到86.6 HB和70.4%IACS。  相似文献   

9.
采用大塑性变形法制备氧化物弥散强化铂铑 (Pt5Rh ODS)复合材料,对材料进行了高温蠕变试验。结果表明,复合材料在高温低应力条件下,表现出的名义应力指数随温度变化较小,名义激活能高于纯Pt和Pt10Rh合金,而且比常规合金材料具有更好的高温蠕变性能。复合材料的高温蠕变性能用晶界反应控制来解释,说明复合材料的蠕变受到扩散蠕变机制控制。复合材料的蠕变断裂行为符合连续蠕变损伤中的内截面损伤模型,蠕变断裂特征为沿晶断裂。  相似文献   

10.
研究了不同长度(2、3、4、5mm)3%的镀铜短碳纤维增强含Sc的2024铝基复合材料的高温蠕变性能和微观结构。结果表明,在200℃、300MPa的蠕变条件下,添加了2mm碳纤维的复合材料的蠕变性能最优,其蠕变断裂时间为21.16h,稳态蠕变速率为1.05×10~(-5)s~(-1)。在不同温度(150~190℃)和不同应力(200~400MPa)蠕变条件下,复合材料的门槛应力随温度的升高而线性下降,其中添加2mm碳纤维增强复合材料的蠕变激活能最高,为83.9kJ/mol。碳纤维增强铝基复合材料的主要蠕变机制为位错攀移。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号