首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amino acid ionic liquids (AAILs) are chemical solvents with high reactivity to CO2. However, they suffer from drastic increase in viscosity on the reaction with CO2, which significantly limits their application in the industrial capture of CO2. In this work, 1‐ethyl‐3‐methylimidazolium acetate ([emim][Ac]) which also exhibits chemical affinity to CO2 but low viscosity, and its viscosity does not increase drastically after CO2 absorption, was proposed as the diluent for AAILs to fabricate hybrid materials. The AAIL+[emim][Ac] hybrids were found to display enhanced kinetics for CO2 absorption, and their viscosity increase after CO2 absorption are much less significant than pure AAILs. More importantly, owing to the fact that [emim][Ac] itself can absorb large amount of CO2, the AAIL+[emim][Ac] hybrids still have high absolute capacities of CO2. Such hybrid materials consisting of a chemical solvent plus another chemical solvent are believed to be a class of effective absorbents for CO2 capture. © 2017 American Institute of Chemical Engineers AIChE J, 64: 632–639, 2018  相似文献   

2.
混合胺改性SBA-15的二氧化碳吸附特性   总被引:2,自引:2,他引:2  
靖宇  韦力  王运东  于燕梅 《化工学报》2014,65(1):328-336
为实现廉价高效的二氧化碳捕集,新型燃烧后CO2捕集固体吸附材料的设计和开发具有重要的研究意义。为提高CO2吸附量,胺功能化改性吸附剂的方法主要有湿浸渍和表面嫁接。基于此,提出了“混合胺”修饰的概念,把湿浸渍和表面嫁接两种改性技术结合起来。把3-氨丙基三甲氧基硅烷(APTS)嫁接到分子筛SBA-15孔道表面,再把聚乙烯亚胺(PEI)浸渍到载体孔道的间隙,制备出高密度胺功能化的CO2吸附剂。主要考察了不同含量的PEI和APTS功能化SBA-15的结构性能、CO2吸附量及胺吸附效率。CO2吸附结果表明,混合胺功能化SBA-15吸附主要依赖于动力学扩散。其中,SBA-15-(APTS-0.5-PEI-50),SBA-15-(APTS-1.0-PEI-50)和SBA-15-(APTS-2.0-PEI-30)在75℃时具有很好的吸附潜力。混合胺功能化SBA-15的胺吸附效率介于单纯嫁接和单纯浸渍的胺功能化SBA-15之间。  相似文献   

3.
Adsorption is considered a promising method for carbon capture. CO2 adsorbents take a variety of forms - but one approach is to fill mesoporous substrates with a polymeric CO2 selective sorbent. SBA-15 and mesocellular siliceous foam (MCF) are high pore volume, high surface area ordered mesoporous materials for which modification with amine should result in high capacity, highly selective adsorbents. SBA-15 and MCF were separately loaded with approximately one pore volume equivalent of linear polyethyleneimine (PEI) (Mw = 2500) or branched PEI (Mn = 1200). CO2 adsorption/desorption isotherms under dry CO2 were obtained at 75, 105 and 115 °C. The CO2 adsorption/desorption kinetics were improved with temperature, though the CO2 capacities generally decreased. The adsorption capacity for MCF loaded with branched PEI at 105 and 115 °C were 151 and 133 mg/g adsorbent, respectively (in 50% CO2/Ar, 20 min adsorption time). These are significantly higher than the adsorption capacity observed for SBA-15 loaded with branched PEI under same conditions, which were 107 and 83 mg/g adsorbent, respectively. Thus the results indicate that, on a unit mass basis, amine modified MCF's are potentially better adsorbents than amine modified SBA-15 for CO2 capture at modestly elevated temperature in a vacuum swing adsorption process.  相似文献   

4.
Anion functionalized strategy has been proposed for the synthesis of macro‐porous resins [IRA‐900][An] through the neutral reaction of the basic resin [IRA‐900][OH] with the corresponding donors. Combining CO2 adsorption results and FT‐IR, solid‐state 13C NMR characterization as well as quantum chemical calculations, chemical adsorption mechanism was verified and tunable capture of CO2 was realized. Among them, the anion functionalized resin [IRA‐900][Triz] exhibits an extremely high adsorption capacity (4.02 mmol g?1 at 25°C, 0.15 bar), outperforming many other good adsorbents. Finally, we discuss the thermostability and recycling stability of [IRA‐900][Triz], which shows a great potential in the industrial capture of CO2. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3008–3015, 2017  相似文献   

5.
A systematic study of CO2 capture on the amine‐impregnated solid adsorbents is carried out at CO2 concentrations in the range of 400–5000 ppm, relating to the direct CO2 capture from atmospheric air. The commercially available polymethacrylate‐based HP2MGL and polyethylenimine are screened to be the suitable support and amine, respectively, for preparation of the adsorbent. The adsorbents exhibit an excellent saturation adsorption capacity of 1.96 mmol/g for 400 ppm CO2 and 2.13 mmol/g for 5000 ppm CO2. Moisture plays a promoting effect on CO2 adsorption but depends on the relative humidity. The presence of O2 would lead to the decrease of adsorption capacity but do not affect the cyclic performance. The diffusion additive is efficient to improve the adsorption capacity and cyclic performance. Moreover, the adsorbents can be easily regenerated under a mild temperature. This study may have a positive impact on the design of high‐performance adsorbents for CO2 capture from ambient air. © 2014 American Institute of Chemical Engineers AIChE J, 61: 972–980, 2015  相似文献   

6.
In order to reduce the sorbent preparation cost and improve its volume‐based sorption capacity, the use of an inexpensive and commercially available silica gel was explored as a support to prepare a solid polyethylenimine sorbent (PEI/SG) for CO2 capture from flue gas. The effects of the pore volume and particle size of the silica gels, molecular weight of polyethylenimine and amount of polyethylenimine loaded, sorption temperature and moisture in the flue gas on the CO2 sorption capacity of PEI/SG were examined. The sorption performance of the developed PEI/SG was evaluated by using a thermogravimetric analyzer and a fixed‐bed flow sorption system in comparison with the SBA‐15‐supported polyethylenimine sorbent (PEI/SBA‐15). The best PEI/SG sorbent showed a mass‐based CO2 sorption capacity of 138 mg‐CO2/g‐sorbent, which is almost the same as that of PEI/SBA‐15. In addition, the PEI/SG gave a high volume‐based sorption capacity of 83 mg‐CO2/cm3‐sorbent, which is higher than that of PEI/SBA‐15 by a factor of 2.6. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2495–2502, 2012  相似文献   

7.
CO2 sorption capacities of the neat and silica‐supported 1‐butyl‐3‐methylimidazolium‐based ionic liquids (ILs) were measured under atmospheric pressure. The silica‐supported ILs were synthesized by the impregnation‐vaporization method and charactrized by N2 adsorption/desorption and thermogravimeteric analysis (TGA). Evaluation of the effects of influential factors on sorption capacity demonstrated that by increase of the temperature, flow rate, and the weight percentage of ILs in sorbents, the sorption capacity decreases. Among the sorbents, [Bmim][TfO] and SiO2‐[Bmim][BF4](50) had the highest capacity. By increasing the IL portion in SiO2‐[Bmim][BF4], the selectivity for CO2 to CH4 could be improved. The CO2‐rich sorbents could be easily recycled.  相似文献   

8.
Post‐combustion processes based on ionic liquids (ILs) and membrane contactors are attractive alternatives to traditional systems. Here, a gas stream composed of 15 % CO2 and 85 % N2 flowed through the lumen side of a hollow‐fiber membrane contactor containing poly(vinylidene fluoride)‐IL (PVDF‐IL) fibers. The IL 1‐ethyl‐3‐methylimidazolium acetate [emim][Ac] served as an absorbent due to its high chemical absorption and CO2 solubility. The overall mass transfer coefficient (Koverall), activation energy (Ea), and resistances of the hollow‐fiber membrane were quantified. The Koverall value was one order of magnitude higher than those reported in previous works with conventional solvents, and the Ea was lower than formerly stated values for other solvents. A theoretical simulation was conducted to estimate the operational parameters required for 90 % CO2 capture and to quantify intensification effects related to CO2 absorption in a packed column.  相似文献   

9.
Mesoporous silicas with enhanced pore structures were synthesized and polyethylenimine (PEI) was immobilized in them to produce adsorbents for CO2. The prepared samples were characterized by N2 adsorption–desorption isotherms and small angle X-ray diffraction, and their CO2 adsorption performance were evaluated. CO2 adsorption capacity increased with operating temperature initially and then decreased. Besides, CO2 adsorption capacity increased due to the PEI loading with more amine sites. The results showed that the structure of support played an important role in the CO2 adsorption capacity. High surface area and large pore volume also favored the CO2 adsorption capacity.  相似文献   

10.
A series of solid amine adsorbents were prepared by the template method with ion-exchange resin (D001) as the carrier and polyethyleneimine (PEI) as the modifier. The absorbents were characterized by energy disperse spectroscopy (EDS), scanning electron microscope (SEM), N2 adsorption–desorption, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) techniques. The effects of PEI loading, adsorption temperature and influent velocities on CO2 adsorption capacity in a fixed-bed reactor were investigated. The results show that the solid amine adsorbent prepared by the template method had a better PEI dispersion, stability and CO2 adsorption capacity. The maximum CO2 adsorption capacity was 3.98 mmol·g?1 when PEI loading was 30%, the adsorption temperature was 65°C and the influent velocity was 40 mL·min?1. The CO2 adsorption capacity decreased only by 9.50% after 10 cycles of adsorption–desorption tests. The study of kinetics indicates that both chemical adsorption and physical adsorption occurred in the CO2 adsorption process. The CO2 adsorption process included fast breakthrough adsorption and gradually approaching equilibrium stage. The particle internal diffusion process was the control step for CO2 adsorption.  相似文献   

11.
The increase in energy demand caused by industrialization leads to abundant CO2 emissions into atmosphere and induces abrupt rise in earth temperature. It is vital to acquire relatively simple and cost-effective technologies to separate CO2 from the flue gas and reduce its environmental impact. Solid adsorption is now considered an economic and least interfering way to capture CO2, in that it can accomplish the goal of small energy penalty and few modifications to power plants. In this regard, we attempt to review the CO2 adsorption performances of several types of solid adsorbents, including zeolites, clays, activated carbons, alkali metal oxides and carbonates, silica materials, metal–organic frameworks, covalent organic frameworks, and polymerized high internal phase emulsions. These solid adsorbents have been assessed in their CO2 adsorption capacities along with other important parameters including adsorption kinetics, effect of water, recycling stability and regenerability. In particular, the superior properties of adsorbents enhanced by impregnating or grafting amine groups have been discussed for developing applicable candidates for industrial CO2 capture.  相似文献   

12.
The present work presents the design, assembly and experimental validation of a microcalorimetric device coupled to a volumetric adsorption setup applied to the characterisation of adsorbents for carbon dioxide (CO2) capture. Three adsorbents were evaluated for CO2 adsorption at 273 K in the pressure range of vacuum to 101 kPa. The data for CO2 on zeolite 13X agreed well with the available data reported in the literature, thus validating the device, which also provided reproducible results with an activated carbon sample. For the amine‐modified zeolite, the differential enthalpy at lower coverage was increased by a factor of 1.7 as compared to the zeolite matrix. This points out to the potential of such technique to characterise heterogeneities introduced by amine impregnation. However, the adsorption uptake was decreased by factor of 2.7 at 101 kPa. This fact suggests that amino groups may be blocking some physisorption sites, leading to restricted chemisorption on the outer surface. Thus, the main novelty of this study is the simultaneous measurement of adsorption isotherms and respective differential enthalpy curves for amine‐impregnated adsorbents, which may be considered a fingerprint of the modified surface chemistry. This work has been carried out in the framework of a cooperation project between three South American universities and is part of the effort to develop and fully characterise adsorbent materials intended for CO2 capture. © 2012 Canadian Society for Chemical Engineering  相似文献   

13.
CO2 permeation through imidazolium-based ionic liquids (ILs, [BMIM][Ac], [EMIM][Ac], [OMIM][Ac], [BMIM][BF4], and [BMIM][PF6]) confined in 1.0, 2.0, and 3.5?nm γ-alumina pores was investigated using molecular dynamics simulation. It was found that the nanopore confinement effect influenced the structure of confined ILs greatly, resulting in a layered structure and anisotropic orientation of ILs. In the center of 2.0-nm pore, the long alkyl chain of [BMIM]+ tended to be parallel to the wall, providing a straight diffusion path benefiting the CO2 permeation. The CO2 diffusion coefficients in confined [EMIM][Ac], [BMIM][Ac], and [OMIM][Ac] were 2.3–4.1, 2.4–6.4, and 14.4–21.7?×?10?10?m2?s?1, respectively. This order was opposite to that in the bulk ILs, because the longer alkyl chain led to a more ordered structure, facilitating CO2 diffusion. In addition, the CO2 solubilities were 445–722?mol?m?3?MPa?1 for the five ILs confined in 1.0?nm pore, which were larger than those in 2.0 and 3.5?nm pores (196–335?mol·m?3?MPa?1), due to the larger free volume. Both parallel orientation of alkyl chain and large free volume could increase the CO2 permeability in confined ILs.  相似文献   

14.
Mesocellular silica foam (MSU-F) supports were functionalized via wet impregnation with various amine and alcohol compounds for use as high-capacity adsorbents for CO2 separation. The effect of the amino, hydroxyl, and ether functional groups in the impregnating mixture on the CO2 adsorption capacity was investigated. Chemical adsorption was controlled by the composition of the compounds, and the blending effect on the adsorption performance was dependent on the temperature. MSU-F (30 wt.%) impregnated with a mixture of tetraethylenepentamine (40 wt.%) and aminoethylethanolamine (30 wt.%) showed a high adsorption capacity of 5.4 mmol/g at 333 K for 15 kPa CO2.  相似文献   

15.
Poly(ionic liquid)s have been demonstrated as high efficient CO2 absorbents. In the current study, a kind of poly(ionic liquid)s, Poly[2‐(methacryloyloxy)‐ethyl] trimethylammonium tetrafluoroborate (P[MATMA][BF4]) was used to functionalize graphene oxide (GO). The hybrid in which P[MATMA][BF4] was covalently bonded on GO platelets was prepared by a simple method, that is, traditional radical polymerization. The characterizations based on transmission electron microscopy, scanning electron microscope, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy demonstrated the graft of P[MATMA][BF4] on GO. N2 adsorption measurements indicated that P[MATMA][BF4] also greatly increased the specific surface area of GO. Due to the higher specific surface area and the CO2 affinity of P[MATMA][BF4], the GO‐P[MATMA][BF4] hybrid exhibited a much higher CO2 adsorption capacity compared with GO, GO‐NH2, and P[MATMA][BF4]. Their study showed that the combinations of poly(ionic liquid)s and GO could be promising CO2 absorbents. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44592.  相似文献   

16.
A series of specific solvent-free nanofluids with ionically tethered polyether amine terminated polymers were successfully prepared and evaluated based on multiwalled carbon nanotubes (MWCNTs). The newly synthesized sorbents exhibited enhanced carbon dioxide (CO2) capture capacities compared to their corresponding polyether amine and pristine MWCNTs. The effects of polyether amine canopy structure such as amine types, Molecular weight (Mw), Ethylene Oxide/Propylene Oxide (EO/PO), viscosity and melting point on CO2 capture capacities were investigated. It had been demonstrated that the sorbents impregnated with more unprotonated amine groups and higher Mw or EO/PO showed larger CO2 capture capacities and good stabilities over multiple adsorption–desorption cycles. Last but not least, we also demonstrated that the lower melting point and viscosity were beneficial for the CO2 uptake.  相似文献   

17.
A solid amine adsorbent was prepared by modifying a porous polystyrene resin (XAD‐4) with chloroacetyl chloride through a Friedel–Crafts acylation reaction, followed by aminating with tetraethylenepentamine (TEPA). The adsorption behavior of CO2 from a simulated flue gas on the solid amine adsorbent was evaluated. Factors that could determine the CO2 adsorption performance of the adsorbents such as amine species, adsorption temperature, and moisture were investigated. The experimental results showed that the solid amine adsorbent modified with TEPA (XAD‐4‐TEPA), which had a longer chain, showed an amine efficiency superior to the other two amine species with shorter chains. The CO2 adsorption capacity decreased obviously as the temperature increased because the reaction between CO2 and amine groups was an exothermic reaction, and its adsorption amount reached 1.7 mmol/g at 10 °C in dry conditions. The existence of water could significantly increase the CO2 adsorption amount of the adsorbent by promoting the chemical adsorption of CO2 on XAD‐4‐TEPA. The adsorbent kept almost the same adsorption amount after 10 cycles of adsorption–desorption. All of these results indicated that amine‐functionalized XAD‐4 resin was a promising CO2 adsorbent. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45046.  相似文献   

18.
In this study Ni2+ adsorption properties of polyethyleneimine (PEI)‐attached poly(p‐chloromethylstyrene) (PCMS) beads were investigated. Spherical beads with an average size of 186 μm were obtained by the suspension polymerization of p‐chloromethylstyrene conducted in an aqueous dispersion medium. Owing to the reasonably rough character of the bead surface, PCMS beads had a specific surface area of 14.1 m2/g. PEI chains could be covalently attached onto the PCMS beads with equilibrium binding capacities up to 208 mg PEI/g beads, via a direct chemical reaction between the amine and chloro‐methyl groups. After PEI adsorption with 10% (w/w) initial PEI concentration, free amino content of PEI‐attached PCMS beads was determined as 0.91 mEq/g. PEI‐attached PCMS beads were utilized as adsorbents in the adsorption/desorption of Ni2+ ions from synthetic solutions. The adsorption process was fast; 90% of adsorption occurred within 90 min, and equilibrium was reached at around 2 h. Adsorption capacity was obtained to be 78.2 mg/g at a pH of about 6.0. The chelating beads can be easily regenerated by 0.1 M HNO3 with higher effectiveness. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2467–2473, 2002  相似文献   

19.
Imidazolium‐tagged bis(oxazolines) have been prepared and used as chiral ligands in the copper(II )‐catalysed Diels–Alder reaction of N‐acryloyl‐ and N‐crotonoyloxazolidinones with cyclopentadiene and 1,3‐cyclohexadiene in the ionic liquid 1‐ethyl‐3‐methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [emim][NTf2]. A significant and substantial enhancement in the rate and enantioselectivity was achieved in [emim][NTf2] compared with dichloromethane. For example, complete conversion and enantioselectivities up to 95 % were obtained for the reaction between N‐acryloyloxazolidinone and cyclopentadiene within 2 min in [emim][NTf2] whereas the corresponding reaction in dichloromethane required 60 min to reach completion and gave an ee of only 16 %. The enhanced rates obtained in the ionic liquid enabled a catalyst loading as low as 0.5 mol % to give complete conversion within 2 min while retaining the same level of enantioselectivity. The imidazolium‐tagged catalysts can be recycled ten times without any loss in activity or enantioselectivity and showed much higher affinity for the ionic liquid phase during the recycle procedure than the analogous uncharged ligand.  相似文献   

20.
The study of CO2 absorption in ionic liquids (ILs): [Emim] [Ac], [Bmim] [Ac] in a packed column is presented. The influence of mass transfer resistances, initial CO2 concentration, absorption temperature and 2, 5, 10% wt. water addition on CO2 removal efficiency was investigated. The resistance in series model and estimated values of enhancement factor were used to predict with good accuracy mass fluxes of absorbed carbon dioxide for both ILs. The CO2 absorption efficiency in packed column depends on temperature and initial CO2 concentration. The addition of small amounts of water to [Emim][Ac] is of minor effect on CO2 absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号