首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 828 毫秒
1.
SMSBR中PAC对膜污染的防治作用   总被引:17,自引:2,他引:17  
在SMSBR处理焦化废水的过程中,通过向反应器中投加粉末活性炭(PAC)进而形成生物活性炭(BAC)来实现对膜污染的防治,并通过对BAC污泥的终端过滤来反映其对膜污染的改善作用。试验结果表明,BAC污泥在终端过滤过程中,其相对通量的变化规律与普通活性污泥相同,但投加PAC后的膜通量明显提高。另外,在相同压力下普通活性污泥的通量衰减指数要远高于BAC污泥,而在相同PAC浓度下BAC污泥的通量衰减指数随压力的变化与普通活性污泥一样,未表现出一定的规律性。BAC污泥的阻力分布表明,沉积层阻力仍占有绝对优势(大于80%),并随压力的升高而增大,但与普通活性污泥相比该比例有明显下降,膜的固有阻力所占比例明显提高,体现了PAC对膜污染的防治作用。  相似文献   

2.
PAC-自生动态膜生物反应器处理生活污水的研究   总被引:3,自引:0,他引:3  
向由孔径为56μm的普通工业滤布组成的膜生物反应器中投加不同量的粉末活性炭,对恒通量下的单周期运行情况进行了考察,并对被污染的动态膜表面和截面进行了扫描电镜观察。结果表明,较佳的PAC投量约为2g/L。在PAC投量为2g/L时,其运行周期(15d)为不投加PAC时(6d)的2.5倍,反应器中占优势的污泥平均粒径(100μm)也较不投加PAC时的(80μm)大。经扫描电镜分析可知,未投加PAC时膜孔隙间的凝胶层是造成膜污染的主要因素;投加2异/L的PAC时膜表面的滤饼层是造成膜污染的主要因素,其膜污染物易于清洗去除,经水力清洗和刷子刷洗后膜通量可基本恢复,再用0.5%的NaClO溶液浸泡12h后膜通量可完全恢复。  相似文献   

3.
当浸没式膜生物反应器(SMBR)采用真空抽吸出水时一般不能连续运行,为此以高浓度中药废水为处理对象,对SMBR的真空抽吸出水自控系统进行了设计。中试运行结果表明,采用该自控系统可确保真空罐内始终保持所需要的真空度,实现了SMBR的连续运行;膜通量随真空值的下降而降低,为维持其稳定应控制压力在0.010~0.020MPa,同时SMBR应低压启动、恒流运行。  相似文献   

4.
投加粉末活性炭对膜阻力的影响研究   总被引:30,自引:5,他引:30  
小试和中试研究结果表明:粉末活性炭在膜生物反应器系统中具有改善泥水泥合液的性质和膜表面泥饼层结构的作用,从而减小了膜的过滤阻力,减缓了膜通量的下降。向膜生物反应器内投加粉末活性炭是提高和维持膜通量的有效途径,并且可以降低运行费用。  相似文献   

5.
采用膜生物反应器(MBR)与粉末活性炭(PAC)的组合工艺(MBR/PAC)处理微污染源水,考察了膜污染的机理与特征,探讨了控制膜污染的措施。结果表明:MBR/PAC工艺处理微污染源水时的膜污染发展速度较快;膜污染以滤饼层沉积和有机物膜孔污染为主,同时伴随着少量的无机物污染;膜固有阻力、滤饼层阻力、凝胶层与膜孔堵塞阻力分别占膜总阻力的15%、43%和42%。只用清水冲洗膜表面可使膜过滤性能恢复35.7%~38.5%;而用0.3%~0.5%的NaClO浸泡足够时间后,膜过滤性能基本得到恢复;在碱洗后增加稀酸清洗,可进一步提高清洗效果。  相似文献   

6.
纳米TiO_2改性膜生物反应器处理污水的研究   总被引:2,自引:0,他引:2  
采用啧涂纳米TiO2的方法对聚偏氟乙烯(PVDF)微滤膜进行改性,用改性膜生物反应器(MBR)和非改性MBR处理污水,对比了两者的出水水质、膜通量和膜过滤阻力。结果表明,两套MBR的出水水质均可达到《生活杂用水水质标准》(CJ25.1—89)的要求;纳米TiO2改善了膜表面的亲水性和粗糙度,从而使改性MBR的清水膜过滤阻力和不同抽吸压力下的膜过滤阻力均低于非改性MBR的,而其在不同抽吸压力下的稳定膜通量则高于非改性MBR的。  相似文献   

7.
膜生物法处理城市垃圾渗滤液   总被引:17,自引:2,他引:17  
采用膜生物法对垃圾渗滤液经UASB预处理的出水进行了降解试验。结果表明,MBR对COD的去除率为70%~85%,对氨氮的去除率为90%~99.8%,对总氮的去除率为50%~67%;膜通量与运行时间呈幂函数关系;滤饼层阻力在总阻力中所占的比例最大;无机型膜污染阻力远大于有机型;酸洗对膜的清洗效果要好于碱洗。  相似文献   

8.
水解酸化/SMBR处理含PVA退浆废水的研究   总被引:4,自引:0,他引:4  
采用水解酸4E/SMBR工艺处理含PVA退浆废水。结果表明,当进水COD为1000mg/L左右、BOD5/COD值为0.15~0.20时,该工艺对COD的平均去除率在95%左右,其中SMBR的贡献为75%左右;当水解酸化池的水力停留时间为20、16、10h时,对COD的去除率分别为20%、18%和13%,其SMBR中最大COD有机负荷分别为0.33、0.29和0.20kgCOD/(kgVSS·d);采用水洗+酸洗+碱洗的方式对膜进行清洗,效果最好,可使膜通量恢复到新膜的92%。  相似文献   

9.
MBR处理印染废水的膜污染及清洗研究   总被引:7,自引:5,他引:7  
膜生物反应器(MBR)是一种新型反应器,处理印染废水时除污效果很显著,但长时间的运行会造成膜的严重污染,为此对A/OMBR(厌氧—膜生物反应器)处理印染废水时的膜污染情况和清洗效果做了研究。结果表明,膜污染主要是由膜表面凝胶层造成的;化学清洗的效果优于物理清洗(化学清洗能恢复膜通量约90%以上,而物理清洗仅能恢复膜通量约70%);NaOH的清洗效果优于NaOCl。  相似文献   

10.
采用一体式聚丙烯中空纤维膜生物反应器处理模拟生活污水,考察了其处理效果,研究了运行条件对膜污染的影响和不同清洗方法对受污染膜的清洗效果。结果表明,在进水COD为172~331mg/L、NH3-N为23~27mg/L的条件下,稳定运行时系统对COD和NH3-N的去除率均大于90%。抽停比越小则膜通量的衰减越缓慢;抽吸压力越大则初始膜通量越大;试验中确定的最佳抽停比为8:2,临界抽吸压力为30kPa。对已污染的膜采用空曝气、水洗、水洗+碱洗、水洗+酸洗、水洗+碱洗+酸洗的方法进行清洗,可使膜通量分别恢复至新膜通量的30%、46.3%、86.54%、82.36%、92%。  相似文献   

11.
Yu HY  He XC  Liu LQ  Gu JS  Wei XW 《Water research》2007,41(20):4703-4709
Fouling is the major obstacle in membrane processes applied in water and wastewater treatment. The polypropylene hollow fiber microporous membranes (PPHFMMs) were surface modified by N2 low-temperature plasma treatment to improve the antifouling characteristics. Morphological changes on the membrane surface were characterized by field emission scanning electron microscopy (FE-SEM). The change of surface wettability was monitored by contact angle measurements. The static water contact angle of the modified membrane reduced obviously; the relative pure water flux of the modified membranes increased with the increase of plasma treatment time. To assess the relation between plasma treatment and membrane fouling in a submerged membrane bioreactor (SMBR), filtration of activated sludge was carried out by using synthetic wastewater. After continuous operation in the SMBR for about 90 h, flux recoveries for the N2 plasma-treated PPHFMM for 8 min were 62.9% and 67.8% higher than those of the virgin membrane after water and NaOH cleaning. The irreversible fouling resistance decreased after plasma treatment.  相似文献   

12.
This work aims to compare biomass structure and performance of a submerged membrane bioreactor (SMBR) and an activated sludge process (ASP) treating the same domestic wastewater. The influence of the separation technique (membrane filtration or settling) and operation at high sludge-retention time (SRT) were investigated. Over the entire range of SRT (10-110 days), the SMBR achieved very good organic removal efficiencies, ranging from 90.8+/-0.2% to 94.2+/-1.6% based on total COD (TCOD), whereas those of ASP were between 87.4+/-1.8% and 90.3+/-0.8%. The contribution of the membrane in the increase in performance was due to total suspended solid retention and also partly due to retention of proteins and polysaccharides of the sludge supernatant. No significant difference in excess sludge production was observed between the two processes operated at the same SRT, but sludge production in SMBR decreased from 0.31 to 0.13 g(VSS)g(COD)(-1) as SRT increased from 9 to 110 days. The difference in sludge characteristics and performance was especially pronounced as SRT increased, resulting in deterioration of sludge settleability and effluent quality of the ASP (filamentous bacteria, increase of protein and polysaccharide release). Membrane filtration induced accumulation of soluble and colloidal proteins and polysaccharides which were progressively degraded in the supernatant as the SRT increased. At similar SRT, no significant difference was observed in the amount of extractable exocellular polymeric substances (bound EPS) from ASP and SMBR sludge. However as the SRT increased, the total specific amount of bound EPS in flocs decreased and the ratio proteins/polysaccharides also decreased. Concomitantly, laser diffraction analysis, microscopic observations, turbidity and DSVI measurement showed that the SRT increase induced significant modifications in sludge morphology in SMBR: decrease in floc size, densification of aggregates, and development of non-flocculating organisms.  相似文献   

13.
Williams MD  Pirbazari M 《Water research》2007,41(17):3880-3893
This research investigated a membrane bioreactor (MBR) process for removing biodegradable organic matter (BOM) and trihalomethane (THM) precursors from pre-ozonated water. Bench-scale and mini-pilot-scale MBR experiments were conducted using powdered activated carbon (PAC) and acclimated biomass. Dissolved organic carbon (DOC) was removed through a combination of adsorption and biodegradation mechanisms, and the initial DOC removals depended on carbon dose, while steady-state removals were in the 20-60 percent range under various operating conditions. Both assimilable organic carbon (AOC) and total aldehydes were mostly removed to near detection limits and were not affected by PAC dosage. The AOC(NOX) removals were significantly higher than AOC(P17) or total AOC removals probably because the MBR microbial consortium was closer in characteristics to Aquaspirillum NOX than to Pseudomonas fluorescens (P17). The DOC was used instead of biodegradable organic carbon (BDOC) as a parameter for evaluating disinfection byproduct formation and bacterial regrowth potentials because BDOC assays did not yield consistent and conclusive results due to analytical difficulties. The removals of THM precursors were high when PAC was added; however, steady-state removals were a function of operating conditions and PAC dosage. Addition of PAC enhanced DOC removals and membrane permeate fluxes. Furthermore, pre-ozonation reduced membrane fouling and enhanced membrane permeate flux.  相似文献   

14.
Why low powdered activated carbon addition reduces membrane fouling in MBRs   总被引:1,自引:0,他引:1  
Previous research had demonstrated that powdered activated carbon (PAC), when applied at very low dosages and long SRTs, reduces membrane fouling in membrane bioreactor (MBRs). In this contribution several mechanisms to explain this beneficial effect of PAC were investigated, including enhanced scouring of the membrane surface by PAC particles, adsorption of membrane foulants by PAC and subsequent biodegradation and a positive effect of PAC on the strength of the sludge flocs. It was concluded that the latter mechanism best explains why low dosages of PAC significantly reduce membrane fouling. Cheaper alternatives for PAC may have a similar effect.  相似文献   

15.
Organic fouling and biofouling are the major severe types of fouling of reverse osmosis (RO) membranes in seawater (SW) desalination. Low pressure membrane filtration such as ultrafiltration (UF) has been developed as a pre-treatment before reverse osmosis. However, UF alone may not be an effective enough pre-treatment because of the existence of low-molecular weight dissolved organic matter in seawater. Therefore, the objective of the present work is to study a hybrid process, powdered activated carbon (PAC) adsorption/UF, with real seawater and to evaluate its performance in terms of organic matter removal and membrane fouling. The effect of different PAC types and concentrations is evaluated. Stream-activated wood-based PAC addition increased marine organic matter removal by up to 70% in some conditions. Moreover, coupling PAC adsorption with UF decreased UF membrane fouling and the fouling occurring during short-term UF was totally reversible. It can be concluded that the hybrid PAC adsorption/UF process performed in crossflow filtration mode is a relevant pre-treatment process before RO desalination, allowing organic matter removal of 75% and showing no flux decline for short-term experiments.  相似文献   

16.
研究了浸没式膜生物反应器(SMBR)对城市污水中不同分子质量有机物的去除特性,探讨了不同工艺参数对氮去除效果的影响。在连续进水、间歇曝气、间歇出水的运行条件下,SMBR对城市污水中有机物和氨氮的去除效果较好。当HRT为4 h、曝气/停曝时间为90 min/30min时,SMBR对小分子质量有机物(〈4 ku)的去除率为44%,对中等分子质量有机物(4~30 ku)的去除率〉90%,高分子质量有机物(〉30 ku)因可被微滤膜高效截留而在反应器中发生一定程度的积累。影响脱氮效果的因素包括DO、HRT、曝气/停曝时间等。当DO为3.2 mg/L时,总氮可通过同步硝化反硝化作用被去除。当曝气/停曝时间周期为120 min、HRT为4 h时,脱氮较适宜的曝气/停曝时间为90 min/30 min。  相似文献   

17.
As a pretreatment for membrane microfiltration (MF), the use of powdered activated carbon (PAC) with a particle size much smaller than that of conventional PAC (super-powdered PAC, or S-PAC) has been proposed to enhance the removal of dissolved substances. In this paper, another advantage of S-PAC as a pretreatment for MF is described: the use of S-PAC attenuates trans-membrane pressure increases during the filtration operation. The floc particles that formed during coagulation preceded by S-PAC pretreatment were larger and more porous than the floc particles formed during coagulation preceded by PAC pretreatment and those formed during coagulation without pretreatment. This result was due to increased particle–particle collision frequency and better removal of natural organic matter, which inhibits coagulation by consuming coagulant, before the coagulation reaction. The caked fouling layer that built up on the membrane surface was thus more permeable with S-PAC than with normal PAC. Both physically reversible and irreversible membrane foulings were reduced, and more stable filtration was accomplished with S-PAC pretreatment.  相似文献   

18.
投加颗粒活性炭对膜生物反应器过滤特性的影响   总被引:4,自引:0,他引:4  
膜污染是制约膜技术应用的重要因素。向膜生物反应器(MBR)中投加颗粒活性炭(GAC),通过分析MBR系统中膜通量、过滤阻力等的变化,考察投加GAC对MBR系统过滤特性的影响。结果表明,运行30d后,未投加和投加GAC的MBR系统的膜通量分别降至初始的31.3%和91.7%;未投加GAC系统的总过滤阻力和极化阻力分别为投加GAC系统的5.8和19.4倍,其污泥的多糖和蛋白质含量为投加GAC系统的近2倍,而其胶体物质和溶解性物质浓度分别为投加GAC系统的3.2和2.2倍。由此表明,投加GAC可大大减缓膜污染,延长膜的过滤周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号