首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The mechanism underlying 5-hydroxytryptamine (5-HT) and/or dopamine release induced by (+)-amphetamine ((+)-Amph), 3,4-methylendioxymethamphetamine (MDMA), p-chloroamphetamine (pCA) and (+)-fenfluramine ((+)-Fen) was investigated in rat brain superfused synaptosomes preloaded with the 3H neurotransmitters. 2. Their rank order of potency for [3H]-5-HT-releasing activity was the same as for inhibition of 5-HT uptake (pCA > or = MDMA > or = (+)-Fen > > (+)-Amph). Similarly, their rank order as [3H]-dopamine releasers and dopamine uptake inhibitors was the same ((+)-Amph > > pCA = MDMA > > (+)-Fen). We also confirmed that the release induced by these compounds was prevented by selective transporter inhibitors (indalpine or nomifensine). 3. [3H]-5HT and/or [3H]-dopamine release induced by all these compounds was partially (31-80%), but significantly Ca(2+)-dependent. Lack of extracellular Ca2+ did not alter uptake mechanisms nor did it modify the carrier-dependent dopamine-induced [3H]-dopamine release. (+)-Amph-induced [3H]-dopamine release and pCA- and MDMA-induced [3H]-5-HT release were significantly inhibited by omega-agatoxin-IVA, a specific blocker of P-type voltage-operated Ca(2+)-channels, similar to the previous results on (+)-Fen-induced [3H]-5-HT release. 4. Methiothepin inhibited the Ca(2+)-dependent component of (+)-Amph-induced [3H]-dopamine release with high potency (70 nM), as previously found with (+)-Fen-induced [3H]-5-HT release. The inhibitory effect of methiothepin was not due to its effects as a transporter inhibitor or Ca(2+)-channel blocker and is unlikely to be due to its antagonist properties on 5-HT1/2, dopamine or any other extracellular receptor. 5. These results indicate that the release induced by these compounds is both 'carrier-mediated' and Ca(2+)-dependent (possibly exocytotic-like), with the specific carrier allowing the amphetamines to enter the synaptosome. The Ca(2+)-dependent release is mediated by Ca(2+)-influx (mainly through P-type Ca(2+)-channels), possibly triggered by the drug interacting with an unknown intracellular target, affected by methiothepin, common to both 5-HT and dopamine synaptosomes.  相似文献   

2.
Small-conductance, ATP-sensitive K(+)-channels (KATP) localized in apical membranes of both thick ascending limb of the loop of Henle and cortical collecting duct cells may be involved in Na+ reabsorption and K+ secretion in the mammalian kidney. Possible pharmacologic tools to evaluate such an hypothesis may be the antidiabetic sulfonylureas which block K(+)-channels in pancreatic beta-cells. In saline-loaded conscious rats, glyburide (GLY) dose-dependently increased urinary Na+ excretion with little change in urinary K+ excretion after i.p. administration (10-100 mg/kg). In renal clearance studies, GLY at 25 mg/kg i.v. increased Na+ excretion 350% during the first hour post-treatment without affecting K+ excretion, glomerular filtration rate, mean arterial pressure or heart rate. GLY at 50 mg/kg was no more natriuretic than the 25 mg/kg dose, whereas 12.5 mg/kg of GLY increased Na+ excretion 200%. The change in Na+ excretion produced by 25 mg/kg of GLY in streptozotocin-induced diabetic rats was significantly greater than the change after drug vehicle in these animals. It is unlikely that the natriuresis produced by GLY is secondary to changes in plasma insulin and/or glucose because the doses used were far above GLY's insulin-releasing action (i.e., all natriuretic doses would have produced maximal insulin release) and GLY was natriuretic in streptozotocin-induced diabetic rats. It is possible that GLY interferes with reabsorption of Na+ by blocking KATP and thereby interrupting K+ recycling and Na(+)-2Cl(-)-K+ cotransport in the loop of Henle.  相似文献   

3.
Nicotine at very low doses (5-30 nM) induced large amounts of luteinizing hormone-releasing hormone (LHRH) release, which was monitored as slow membrane depolarizations in the ganglionic neurons of bullfrog sympathetic ganglia. A nicotinic antagonist, d-tubocurarine chloride, completely and reversibly blocked the nicotine-induced LHRH release, but it did not block the nerve-firing-evoked LHRH release. Thus, nicotine activated nicotinic acetylcholine receptors and produced LHRH release via a mechanism that is different from the mechanism for evoked release. Moreover, this release was not caused by Ca2+ influx through either the nicotinic receptors or the voltage-gated Ca2+ channels because the release was increased moderately when the extracellular solution was changed into a Ca2+-free solution that also contained Mg2+ (4 mM) and Cd2+ (200 microM). The release did not depend on Ca2+ release from the intraterminal Ca2+ stores either because fura-2 fluorimetry showed extremely low Ca2+ elevation (approximately 30 nM) in response to nicotine (30 nM). Moreover, nicotine evoked LHRH release when [Ca2+] elevation in the terminals was prevented by loading the terminals with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and fura-2. Instead, the nicotine-induced release required extracellular Na+ because substitution of extracellular NaCl with N-methyl-D-glucamine chloride completely blocked the release. The Na+-dependent mechanism was not via Na+ influx through the voltage-gated Na+ channels because the release was not affected by tetrodotoxin (1-50 microM) plus Cd2+ (200 microM). Thus, nicotine at very low concentrations induced LHRH release via a Na+-dependent, Ca2+-independent mechanism.  相似文献   

4.
Na(+)-Ca2+ exchanger-associated membrane currents were studied in cultured murine neocortical neurons, using whole-cell recording combined with intracellular perfusion. A net inward current specifically associated with forward (Na+(o)-Ca2+(i)) exchange was evoked at -40 mV by switching external 140 mM Li+ to 140 mM Na+. The voltage dependence of this current was consistent with that predicted for 3Na+:1Ca2+ exchange. As expected, the current depended on internal Ca2+, and could be blocked by intracellular application of the exchanger inhibitory peptide, XIP. Raising internal Na+ from 3 to 20 mM or switching the external solution from 140 mM Li+ to 30 mM Na+ activated outward currents, consistent with reverse (Na+(i)-Ca2+(o)) exchange. An external Ca2(+)-sensitive current was also identified as associated with reverse Na(+)-Ca2+ exchange based on its internal Na+ dependence and sensitivity to XIP. Combined application of external Na+ and Ca2+ in the absence of internal Na+ triggered a 3.3-fold larger inward current than the current activated in the presence of 3 mM internal Na+, raising the intriguing possibility that Na(+)-Ca2+ exchangers might concurrently operate in both the forward and the reverse direction, perhaps in different subcellular locations. With this idea in mind, we examined the effect of excitotoxic glutamate receptor activation on exchanger operation. After 3-5 min of exposure to 100-200 microM glutamate, the forward exchanger current was significantly increased even when external Na+ was reduced to 100 mM, and the external Ca2(+)-activated reverse exchanger current was eliminated.  相似文献   

5.
Cannabinoid receptor agonists inhibit electrically evoked isometric contractions of the myenteric plexus--longitudinal muscle preparation of the guinea-pig small intestine (MPLM), probably by reducing release of acetylcholine (ACh) through the activation of prejunctional CB1 receptors. As CB1 receptors are thought to be negatively coupled through Gi/o proteins to both N-type Ca2+ channels and adenylate cyclase, we have now further investigated the involvement of CB1 receptors by monitoring the effects of forskolin, 8-bromo-cAMP, 3-isobutyl-1-methylxanthine (IBMX), and extracellular Ca2+ on the ability of the cannabinoid agonist, (+)-WIN 55212 to inhibit electrically evoked contractions of the MPLM (0.1 Hz, 0.5 ms, and 110% maximal voltage). Some experiments were performed with normorphine instead of (+)-WIN 55212. At 10(-7) M, forskolin, 8-bromo-cAMP, and IBMX were found to reduce significantly the maximum inhibitory response to (+)-WIN 55212 by 49.4, 48.4, and 40.2%, respectively, without affecting control contractions or responses to exogenous ACh. Low external Ca2+ (0.64 mM) significantly increased the maximum response to (+)-WIN 55212 and shifted the curve slightly leftwards, whereas high external Ca2+ (5.08 mM) reduced the maximum response by 27.2%. The concentration-response curve to normorphine, which also reduces evoked contractions of this preparation as a result of a presynaptic inhibition of ACh release via opioid mu receptors, was affected similarly. These results support the hypothesis that cannabinoid-induced inhibition in the MPLM is mediated by CB1 receptors.  相似文献   

6.
Kava pyrones are pharmacologically active compounds extracted from Piper methysticum Forst. Because kava pyrones were characterized by their anticonvulsive, analgesic and centrally muscle relaxing action, we investigated the influence of (+/-)-kavain, a synthetic kava pyrone, on veratridine-stimulated increase in intrasynaptosomal Na+ concentration ([Na+]i) of rat cerebrocortical synaptosomes. [Na+]i was measured spectrofluorometrically employing SBFI as Na+ sensitive fluorescence dye. Veratridine (5 mumol/I) enhanced basal [Na+]i 6.6-fold from 11.3 to 74.1 mmol/l Na+. Incubation of synaptosomes for 100 sec with (+/-)-kavain was sufficient to reduce dose dependently the stimulated increase of [Na+]i with an IC50 value of 86.0 mumol/l, and almost complete inhibition of Na(+)-channels was attained with 400 mumol/l) reduced veratridine-elevated [Na+]i to 30.4% and 7.9% of control whereas the centrally acting muscle relaxant mephenesin (400 mumol/l) was without any effect. Postapplication of 400 mumol/l (+/-)-kavain or 10 mumol/l TTX immediately diminished veratridine-elevated [Na+]i to nearly basal levels with a half life time of 69.7 and 41.8 sec, respectively. To study the influence of (+/-)-kavain on non stimulated synaptosomes, an increase in [Na+]i was induced by 200 mumol/l ouabain, which enhanced [Na+]i hyperbolically with an initial rate of 18.4 mmol Na+/l min. Preincubation of synaptosomes with 400 mumol/l (+/-)-kavain or 10 mumol/l TTX partly prevented Na(+)-influx for both compounds to the same extent of about 57% of control. The presented data indicate a fast and specific inhibition of voltage-dependent Na(+)-channels by (+/-)-kavain.  相似文献   

7.
Galanin is a widely distributed 29/30 amino acid long neuropeptide with multiple biological effects. It inhibits glucose-induced insulin release, hippocampal acetylcholine release, hippocampal glutamate but not GABA release, and it lowers spinal excitability and firing of locus coeruleus neurons. It stimulates food (fat) intake and growth hormone release upon hypothalamic or i.c.v. injection. Galanin actions are mediated via high affinity Gi/G0 protein-coupled receptors--involving effector systems such as K(+)-, Ca(2+)-channels and adenylate cyclase. Galanin receptor agonists are thought to have therapeutic application in treatment of chronic pain and prevention of ischemic damage; galanin receptor antagonists have therapeutic potential in the treatment of Alzheimer's disease, depression, and feeding disorders.  相似文献   

8.
We investigated how Ca2+-sensitive transient outward current, Ito(Ca), is activated in rabbit ventricular myocytes in the presence of intracellular Na+ (Na+i) using the whole-cell patch-clamp technique at 36 degreesC. In cells dialysed with Na+-free solutions, the application of nicardipine (5 microM) to block L-type Ca2+ current (ICa) completely inhibited Ito(Ca). In cells dialysed with a [Na+]i>/=5 mM, however, Ito(Ca) could be observed after blockade of ICa, indicating the activity of an ICa-independent component. The amplitude of ICa-independent Ito(Ca) increased with voltage in a [Na+]i-dependent manner. The block of Ca2+ release from the sarcoplasmic reticulum by caffeine, ryanodine or thapsigargin blocked ICa-independent Ito(Ca). In Ca2+-free bath solution Ito(Ca) was completely abolished. The application of 2 mM Ni2+ or the newly synthesized compound KBR7943, a selective blocker of the reverse mode of Na+/Ca2+ exchange, or perfusion with pipette solution containing XIP (10 microM), a selective blocker of the exchanger, blocked ICa-independent Ito(Ca). From these results we conclude that, in the presence of Na+i, Ito(Ca) can be activated via Ca2+-induced Ca2+ release triggered by Na+/Ca2+ exchange operating in the reverse mode after blockade of ICa.  相似文献   

9.
The effects of local anaesthetics, bupivacaine and lidocaine, on Ca2+ flux behaviour of sarcoplasmic reticulum and on sarcolemmal functions were studied in the rabbit masseter muscle. The experiments were performed on sarcoplasmic reticulum and sarcolemmal vesicles prepared at 1 to 10 days after injection of local anaesthetics or saline into masseter muscle as well as on sarcoplasmic reticulum vesicles prepared from non-treated rabbits (for assessment of the effect on in vitro incubation with local anaesthetics). Bupivacaine potently reduced the efficiency of active sarcoplasmic reticulum Ca2+ transport as evaluated by coupling ratio (Ca2+ transported/ATP hydrolyzed, in the presence of oxalate) at 3 days after the injection; there was only a slight degree of uncoupling of Ca2+ transport from ATP hydrolysis with lidocaine injection. Bupivacaine but not lidocaine, at 3 days after injection, decreased both the apparent permeability of sarcoplasmic reticulum vesicles to Ca2+, determined by measuring net efflux of Ca2+ after stopping pump-mediated fluxes, and the steady-state Ca2+ load in sarcoplasmic reticulum, but had no effect on overall turnover of the Ca2+ATPase. The effects of bupivacaine on apparent sarcoplasmic reticulum Ca2+ permeability and steady-state Ca2+ load were inhibited by a Ca2+ antagonist verapamil. The reduction of Ca2+ uptake of sarcoplasmic reticulum and the protective effect of verapamil were reproduced in unfractionated homogenates prepared at 3 days after bupivacaine injection. In vitro exposure of sarcoplasmic reticulum vesicles to bupivacaine (0.5 to 50 mM) reduced steady-state Ca2+ load in a dose-dependent manner. The observed effect elicited by bupivacaine (25 mM) was partially protected by procaine, an inhibitor of Ca2(+)-induced Ca2+ release from sarcoplasmic reticulum, or by specific closure of the sarcoplasmic reticulum Ca2+ release channel by ryanodine, suggesting the possibility that in vitro exposure of sarcoplasmic reticulum vesicles to bupivacaine may produce an increase in apparent permeability of sarcoplasmic reticulum to Ca2+. In sarcolemma, bupivacaine reduced Na+,K(+)-ATPase and Na(+)-Ca2+ exchange activities at 3 days after injection; the effects on sarcolemmal vesicles were prevented by verapamil. These results suggest that although the effects elicited by bupivacaine injection and the in vitro exposure to bupivacaine on steady-state Ca2+ load of sarcoplasmic reticulum vesicles were similar, the membrane properties of the vesicles from bupivacaine-treated masseter muscles and those from normal untreated muscles may not be the same, which indicates that pure bupivacaine effect is due partly by an effect on ryanodine- and procaine-sensitive Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Ventricular myocytes, isolated from the guinea-pig, were stimulated to contract by 100 ms long voltage clamp pulses from -80 to 0 mV at 0.5 and 3 Hz. An increase in frequency from 0.5 to 3 Hz led to a positive inotropic effect. Contraction-voltage relationships (CVR) were determined at each frequency. The CVR at 0.5 Hz was bell shaped and peaked between 0 and +20 mV, displaying a voltage dependence similar to the L-type Ca2+ current (ICa). At 3 Hz, contractions continued to increase at positive voltages, giving a more sigmoidal CVR. At 0.5 Hz, TTX reduced the size of steady-state contractions to 91 +/- 2% of control values, but had no effect on the shape of the CVR. At 3 Hz, TTX significantly reduced (P < 0.05) the magnitude of contractions at positive voltages (> or = +20 mV) but had no significant effect on contractions at voltages negative to 0 mV. These data illustrate that intracellular sodium activity (aNa(i)) and, in particular, Na+ entry due to the sodium current (INa) are important in determining the voltage dependence of contraction at positive voltages. Thapsigargin (2.5 microM), a blocker of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, reduced the size of steady-state contractions at 0 mV to 65 +/- 7% at 0.5 Hz. Increasing frequency to 3 Hz abolished the positive inotropy seen under control conditions. With thapsigargin present, contractions at 0.5 Hz were reduced at all potentials and the CVR was bell shaped. At 3 Hz the CVR was sigmoidal in shape. Contractions were significantly inhibited by thapsigargin at all potentials, but most significantly at more positive potentials (> or = +20 mV). These data show that, at normal body temperature, the shape of the CVR of guinea-pig ventricular myocytes changes with stimulation rate. Due to the voltage dependence of ICa, contractions evoked at positive voltages at 3 Hz must be supported by other mechanisms. The sensitivity of such contractions to TTX and thapsigargin suggests the involvement of both a Na(+)-dependent process and the SR. One possibility is that when aiNa and the Ca2+ content of the SR are raised at higher stimulation rates, enhanced Ca2+ entry via reverse Na(+)-Ca2+ exchange leads to a direct activation of the myofilaments and, to a lesser extent, the release of Ca2+ from the SR.  相似文献   

11.
The effects of external pH (pHout) variations on the Na+ and on the Ca2+ dependent fractions of the evoked amino acid neurotransmitter release were separately investigated, using GABA as a model transmitter. In [3H]GABA loaded mouse brain synaptosomes, the external acidification (pHout 6.0) markedly decreased the Na+ dependent fraction of [3H]GABA release evoked by veratridine (10 microM) in the absence of external Ca2+, as well as the Ca2+ dependent fraction of [3H]GABA release evoked by high (20 mM) K+ in the absence of external Na+. The depolarization-induced elevation of [Na(i)] (monitored in synaptosomes loaded with the Na+ indicator dye, SBFI) and the depolarization-induced elevation of [Ca(i)] (monitored in synaptosomes loaded with the Ca2+ indicator dye fura-2) were also markedly decreased at pHout 6. On the contrary, the external alkalinization (pHout 8) facilitated all the above responses. A slight increase of the baseline release of the [3H]GABA was observed when pHout was changed from 7.4 to 8. This effect was only observed in the presence of Ca2+. pHout changes from 7.4 to 6 or to 7 did not modify the baseline release of the transmitter. All the effects of pHout variations on [3H]GABA release were independent on the presence of HCO3-. It is concluded that external H+ regulate amino acid neurotransmitter release by their actions on presynaptic Na+ channels, as well as on presynaptic Ca2+ channels.  相似文献   

12.
The effect of bradykinin (BK), in the presence of ouabain, an inhibitor of Na(+)-K+ ATPase, on catecholamine (CA) secretion was studied in cultured bovine adrenal chromaffin cells, to determine whether Na+, as well as Ca2+, is involved in BK-receptor mediated CA secretion. BK (10(-8)-10(-5) M)-induced CA secretion was markedly potentiated by addition of ouabain (10(-5) M), was blocked by a BK-B2 receptor antagonist, and was decreased in Ca(2+)-free medium. BK-induced increase in 45Ca2+ influx was also potentiated by addition of ouabain. The cultured cells were first incubated with BK for 30 min in Ca(2+)-free medium in the presence or absence of ouabain and then stimulated for 15 min with Ca(2+)-medium without BK or ouabain. Prior stimulation of the cells, BK induced 22Na+ influx and increased Ca(2+)-induced CA secretion and these stimulatory effects of BK were potentiated by added ouabain. When the cells were stimulated with BK and ouabain in Na(+)-free sucrose medium, the Ca(2+)-induced CA secretion was greatly reduced. These results indicated that activation of the BK-B2 receptor and inhibition of the Na+ pump both increase the intracellular Na+ level, resulting in increase in Ca2+ influx and CA secretion.  相似文献   

13.
To gain an insight into the effect of erythropoietin (Epo) upon cation transporters and cytosolic free Ca2+ concentration ([Ca2+]i) of vascular smooth muscle cells (VSMC), we studied whether 1) Epo, per se, alters Ca2+ Na+, K+ fluxes and [Ca2+]i of VSMC, and 2) Epo may modify the effect of endothelin (ET-1). Using serially passaged quiescent cultured VSMC, the following results were obtained. 1) Epo had no direct effect on steady state Na(+)-K+ transporters (Na(+)-K+ pump, Na(+)-K+ cotransport and Na(+)-H+ antiport). 2) ET-1 alone substantially stimulated Na(+)-K+ pump, Na(+)-H+ antiport and 45Ca uptake, although these effects were not potentiated in the presence of Epo. 3) Epo alone substantially stimulated 45Ca uptake, leading to an increase in [Ca2+]i, which effect was not seen in Ca2+ deficient medium, and was partially inhibited with diltiazem but not with TMB-8. 4) Even in the presence of Epo, ET-1 and angiotensin II (A II) had substantial stimulatory effect on [Ca2+]i of cultured VSMC. The present data indicate that Epo, per se, elicits an increase in [Ca2+]i of VSMC through the stimulation of inward Ca2+ flux without affecting Na(+)-K+ transporters. In contrast, Epo did not potentiate ET-1's stimulatory effect on the transporters. Although the effect of Epo was subtle compared to ET-1 and A II, it may alter an overall characteristic of vascular smooth muscle cell contractility, possibly leading to blood pressure elevation in patients on maintenance dialysis.  相似文献   

14.
This work utilizes proteoliposomes reconstituted with renal Na(+)-K(+)-ATPase to study effects of electrical potential (40-80 mV) on activation of pump-mediated fluxes of Na+ or Rb+ (K+) ions and on inhibitory effects of Rb+ ions or organic cations. The latter include guanidinium derivatives that are competitive Na(+)-like antagonists (David, P., Mayan, H., Cohen, H., Tal, D. M., and Karlish, S.J.D. (1992) J. Biol. Chem. 267, 1141-1149). Cytoplasmic side-positive diffusion potentials significantly decreased the K0.5 of Na+ at the cytoplasmic surface for activation of ATP-dependent Na(+)-K+ exchange but did not affect the inhibitory potency of Rb+ (K+) or any Na(+)-like antagonist. Diffusion potentials did not affect activation of Rb(+)-Rb+ exchange by Rb+ ions at the cytoplasmic surface and had only a minor effect on Rb+ activation at the extracellular surface. Previously, we proposed that the cation binding domain consists of two negatively charged sites, to which two K+ or two Na+ ions bind, and one neutral site for the third Na+ (Glynn, I. M., and Karlish, S.J.D. (1990) Annu. Rev. Biochem. 59, 171-205). The present experiments suggest that binding of a Na+ ion in the neutral site at the cytoplasmic surface is sensitive to voltage. By contrast, binding of Rb+ ions at the extracellular surface of renal pumps appears to be only weakly or insignificantly affected by voltage. Inferences on the identity of the charge-carrying steps, based on experiments using proteoliposomes, are discussed in relation to recent evidence that dissociation of Na+ or association of K+ ions, at the extracellular surface, represent the major charge-carrying steps.  相似文献   

15.
We examined the properties of voltage-gated calcium channels mediating endogenous dopamine (DA) and acetylcholine (ACh) release in the isolated rat retina. Application of 30 mM KCl elicited the release of DA and ACh, and these releases were abolished in Ca(2+)-free medium. The high K(+)-evoked DA release was largely blocked by both of omega-agatoxin IVA and omega-conotoxin MVIIC, P- and Q-type calcium channel antagonists, and partly blocked by isradipine, and L-type calcium channel antagonist, and omega-conotoxin GVIA, an N-type calcium channel antagonist. omega-Agatoxin IVA at a small dose, sufficient to block P-type channels alone, was however without effect. On the other hand, the high K(+)-evoked ACh release was partly blocked by omega-agatoxin IVA and omega-conotoxin MVIIC, but was resistant to isradipine and omega-conotoxin GVIA. Flunarizine, a non-selective T-type calcium channel antagonist, did not inhibit the release of DA and ACh. Cd2+ markedly blocked the release of both DA and ACh, Co2+ and Ni2+ slightly blocked the release of DA, and the release of ACh was not blocked by these two divalent cations. These results suggest that the high K(+)-evoked release of retinal DA is largely mediated by omega-agatoxin IVA and omega-conotoxin MVIIC sensitive calcium channels (probably Q-type channels), while the release of retinal ACh is largely mediated by as yet uncharacterized Cd2+ sensitive calcium channels. The properties of voltage-gated calcium channels involved in the release of ACh in the rat retina differ from those of DA.  相似文献   

16.
Adriamycin (AD)-Fe3+ caused the inactivation of Na(+)-, K(+)-ATPase and Ca(2+)-ATPase of erythrocyte membranes during lipid peroxidation. AD-Fe3+ also induced the formation of fluorescent substances from the membranes with lipid peroxidation. The fluorescent substances were little extracted by chloroform-methanol, indicating that they were retained in the membranes. Butylated hydroxytoluene and trolox strongly inhibited both the inactivation of these ATPases and the formation of fluorescent substances with lipid peroxidation. Another antioxidant, vitamin E, slightly prevented the damage of the membranes. However, p-nitrophenyl phosphatase activity and acetylcholine esterase have lower or no susceptibility to the membrane lipid peroxidation. These results indicated that the ATPases were very sensitive to lipid peroxidation and that the membranes were modified during the peroxidation reaction.  相似文献   

17.
The stimulatory effect of thyrotropin-releasing hormone (TRH) on alpha-melanocyte stimulating hormone (MSH) secretion from the frog pars intermedia is mediated through the phospholipase C (PLC) pathway but requires extracellular Ca2+. The aim of the present study was to investigate the respective contribution of extracellular and intracellular Ca2+ in the action of TRH on cytosolic calcium concentration ([Ca2+]i) and alpha-MSH release. In normal conditions, TRH (10(-7) M; 5 s) evoked two types of Ca2+ responses: in 63% of the cells, TRH caused a sustained and biphasic increase in [Ca2+]i while in 37% of the cells, TRH only induced a transient response. In the presence of EGTA or Ni2+, the stimulatory effect of TRH on [Ca2+]i and alpha-MSH secretion was totally suppressed. Nifedipine (10(-6) M) reduced by approximately 50% the amplitude of the two types of Ca2+ responses whereas omega-conotoxin GVIA (10(-7) M) suppressed the plateau-phase of the sustained response indicating that the activation of L-type Ca2+-channels (LCC) is required for initiation of the Ca2+ response while N-type Ca2+-channels (NCC) are involved in the second phase of the response. Paradoxically, neither nifedipine nor omega-conotoxin GVIA had any effect on TRH-induced alpha-MSH secretion. The PLC inhibitor U-73122 (10(-6) M) significantly reduced the transient increase in [Ca2+]i and totally suppressed the sustained phase of the Ca2+ response but had no effect on TRH-induced alpha-MSH secretion. The stimulatory effect of TRH on PLC activity was not effected by nifedipine and omega-conotoxin GVIA but was abolished in Ca2+-free medium. Ryanodine had no effect on the TRH-induced stimulation of [Ca2+]i and alpha-MSH secretion. Concomitant administration of nifedipine/omega-conotoxin GVIA or U-73122/omega-conotoxin GVIA markedly reduced the response to TRH but did not affect TRH-evoked alpha-MSH release. In contrast, concomitant administration of U-73122 and nifedipine significantly reduced the effect of TRH on both [Ca2+]i and alpha-MSH release. Taken together, these data indicate that, in melanotrope cells, activation of TRH receptors induces an initial Ca2+ influx through nifedipine- and omega-conotoxin-insensitive, Ni2+-sensitive Ca2+-channels which subsequently activates LCC and causes Ca2+ mobilization from intracellular pools by enhancing PLC activity. Activation of the PLC causes Ca2+ entry through NCC which is responsible for the plateau-phase of sustained Ca2+ response. Although nifedipine and U-73122, separately used, were devoid of effect on secretory response, Ca2+ entry through LCC and mobilization of intracellular Ca2+ are both involved in TRH-evoked alpha-MSH release because only one source of Ca2+ is sufficient for inducing maximal hormone release. In contrast, the Ca2+ influx through NCC does not contribute to TRH-induced alpha-MSH secretion.  相似文献   

18.
The P2 purinoceptor antagonist suramin reverses skeletal muscle paralysis evoked by non-depolarizing neuromuscular blocking agents in vitro and in vivo. To further study the action of suramin on neuromuscular transmission, (miniature) endplate potentials ((m.)e.p.ps), motor nerve terminal currents and the release of radiolabeled acetylcholine was measured in isolated nerve-muscle preparations. In preparations paralysed by low Ca2+/high Mg2+ conditions, suramin (10 microM-1 mM) induced a concentration-dependent decrease in quantal content of the e.p.ps without affecting m.e.p.ps. Suramin reversed neuromuscular block by d-tubocurarine in these preparations. In erabutoxin paralysed preparations, suramin (40 microM-1 mM) inhibited the motor nerve terminal currents related to Ca2+ influx concentration-dependently, but did not affect Na+ currents. Suramin-induced inhibition of Ca2+ currents was not antagonized by ATP gamma S. Suramin (300 microM) reduced [14C]acetylcholine outflow in non-paralysed rat phrenic nerve-hemidiaphragm preparations by 32%. As suramin did not chelate Ca2+, these results indicate that suramin inhibits neuromuscular transmission by blocking prejunctional Ca2+ channels, thereby decreasing acetylcholine release upon nerve stimulation.  相似文献   

19.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

20.
Pituitary adenylate cyclase-activating polypeptide (PACAP) causes both Ca2+ release and Ca2+ influx in bovine adrenal chromaffin cells. To elucidate the mechanisms of PACAP-induced Ca2+ release, we investigated expression of PACAP receptors and measured inositol trisphosphates (IP3), cyclic AMP, and the intracellular Ca2+ concentration in bovine adrenal medullary cells maintained in primary culture. RT-PCR analysis revealed that bovine adrenal medullary cells express the PACAP receptor hop, which is known to couple with both IP3 and cyclic AMP pathways. The two naturally occurring forms of PACAP, PACAP38 and PACAP27, both increased cyclic AMP and IP3, and PACAP38 was more potent than PACAP27 in both effects. Despite the effects of PACAP on IP3 production, the Ca2+ release induced by PA-CAP38 or by PACAP27 was unaffected by cinnarizine, a blocker of IP3 channels. The potencies of the peptides to cause Ca2+ release in the presence of cinnarizine were similar. The Ca2+ release induced by PACAP38 or by PACAP27 was strongly inhibited by ryanodine and caffeine. In the presence of ryanodine and caffeine, PACAP38 was more potent than PACAP27. PACAP-induced Ca2+ release was unaffected by Rp-adenosine 3',5'-cyclic monophosphothioate, an inhibitor of protein kinase A. Ca2+ release induced by bradykinin and angiotensin II was also inhibited by ryanodine and caffeine, but unaffected by cinnarizine. Although IP3 production stimulated by PACAP38 or bradykinin was abolished by the phospholipase C inhibitor, U-73122, Ca2+ release in response to the peptides was unaffected by U-73122. These results suggest that PACAP induces Ca2+ release from ryanodine/caffeine stores through a novel intracellular mechanism independent of both IP3 and cyclic AMP and that the mechanism may be the common pathway through which peptides release Ca2+ in adrenal chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号