首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
采用无皂乳液聚合方式,制备了VAc/AA/BA三元共聚物,探讨了丙烯酸丁酯结构单元、引发剂用量、反应温度对乳液稳定性、黏度、转化率,以及粘接强度的影响规律.结果表明:BA和APS用量分别为混合单体总质量的8.0%、0.5%,反应温度为75℃,共聚乳液具有良好性能.  相似文献   

2.
有机硅氧烷/丙烯酸酯无皂乳液共聚合研究   总被引:1,自引:0,他引:1  
以离子型共聚单体苯乙烯磺酸钠(NaSS)及非离子型共聚单体甲基丙烯酸-β羟乙酯(HEMA)为功能单体,以过硫酸钾为引发剂进行了有机硅改性丙烯酸酯无皂乳液聚合研究.讨论了反应温度、功能单体用量、功能单体配比以及有机硅加入顺序等因素对乳液聚合及乳液性能的影响.研究发现:反应温度为78~80,℃,功能单体用量为0.4%(NaSS:HEMA=3:1)时,采用种子乳液聚合可以得到稳定的丙烯酸酯无皂乳液;有机硅先加、后加均可得到稳定的硅丙乳液;有机硅加入后,保温阶段易出现凝胶;采用有机硅后加,先热引发、后氧化还原,复合引发体系聚合稳定性较佳.  相似文献   

3.
无皂乳液聚合法制备氟碳聚合物乳液   总被引:2,自引:0,他引:2  
通过低聚物形成、种子乳液制备和核壳乳液聚合工艺,制备自交联氟碳聚合物乳液,由实验优化配方和工艺参数.研究结果表明,无皂乳液聚合法制备核壳结构自交联氟碳聚合物乳液的较佳条件是:n(BA)∶n(MAA)=1.0∶1.60,低聚物P(BA/MANa)用量为6%,m(BA)∶m(MMA)=40∶60,自交联单体加量为2%,丙烯酸六氟丁酯用量为15%,反应温度为80℃,引发体系为过硫酸钾与亚硫酸氢钠的混合物.通过FTIR、TEM、MFT、乳胶膜的接触角和吸水率等对产物进行结构表征和性能检测,结果表明,用该方法制备的氟碳聚合物乳液,其成膜稳定性和乳胶膜性能均优于用常规法制备的.  相似文献   

4.
在相同的配方条件下,采用乳液聚合合成了St/BA/AN水性涂料乳液,考察了单体加料方式对乳液性能、乳胶粒子大小及分布、单体转化率的影响.结果表明:采用批量法和全滴加法不能制得性能优良的水性乳液,而半连续法制得的水性乳液性能优良,单体的转化率高达95%,涂膜效果好.  相似文献   

5.
采用无皂乳液聚合方式,合成了聚醋酸乙烯酯乳液.以转化率和吸水率为主要指标,来评估加料方式.功能单体用量、引发利用量对乳液性能的影响.结果表明,采用半连续加料方式,功能单体占单体总质量的20%,引发剂用量为0.5%,聚醋酸乙烯酯共聚物具有良好的耐水性.  相似文献   

6.
无皂乳液聚合方法合成丙烯酸酯聚合物微粒子的研究   总被引:1,自引:0,他引:1  
用甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)为单体,通过无皂乳液聚合方法,合成了粒度分布均匀的聚合物微粒,微粒子的平均粒径为1.10μm,对性能进行了测试,并对影响无皂乳液聚合过程的主要因素进行了讨论。  相似文献   

7.
以丙烯酸丁酯(BA)和醋酸乙烯酯(VAc)为主要单体,采用乳液聚合法来制备纸塑复合粘合剂.通过电子拉力机、NDJ-5粘度计涂-4#杯等对粘合剂的剥离强度、粘度等性能进行了测试,探讨了单体配比、功能单体用量、单体保护剂、pH值缓冲剂、引发剂、乳化剂等对粘合剂性能的影响,结果表明粘合剂的剥离强度可达到0.1 kN/m以上,油墨的转移率可达90%以上.  相似文献   

8.
以苯乙烯(St)、丙烯酸丁酯(BA)、丙烯酸异辛酯(EHA)为单体,过硫酸钾(KPS)为引发剂,以自制壬基酚聚氧乙烯醚(10)衣康酸单酯磺酸二钠盐为乳化剂,采用乳液聚合法合成St/BA/EHA三元共聚乳液。系统考察了乳化剂、引发剂、反应温度和单体滴加方式对乳液聚合影响。确定了乳液合成的较佳条件:乳化剂质量分数2.1%~2.7%,引发剂质量分数0.6%,反应温度80~85℃及采用连续性滴加单体的方式。借助于激光粒度分布仪、FT-IR、DSC和GPC对共聚乳液进行了表征,结果表明:共聚乳液的平均粒径为100~180nm,玻璃化转变温度Tg为17.7℃,共聚物的重均摩尔质量为1.94×105 g·mol-1。衣康酸单酯钠盐乳化剂的乳化性能良好,能够应用于苯丙乳液的制备过程。并与以十二烷基硫酸钠为乳化剂制备的共聚乳液在施胶性能方面进行了比较,结果表明,以衣康酸单酯钠盐为乳化剂制备的乳液纸张抗水性较强,Cobb值可达42.6g·m-2。  相似文献   

9.
St/BA/AN水性涂料乳液的制备研究   总被引:2,自引:0,他引:2  
采用半连续乳液聚合工艺滴加单体的方式,合成了性能优良的水性乳液,并研究了软/硬单体配比、单体滴加方式、乳化剂总量、引发剂用量对乳液性能的影响.  相似文献   

10.
采用无皂乳液聚合技术和溶胶凝胶技术,合成了纳米SiO2/有机氟改性聚丙烯酸酯无皂乳液,采用红外光谱、动态光散射对其结构进行表征.将乳液应用于织物防水整理,考察了整理剂浓度、焙烘温度及时间对织物防水性能的影响,并采用扫描电子显微镜观察整理后织物的表面形貌.研究结果表明:无皂乳液较普通乳液稳定性更好,当整理剂浓度为70g/L、焙烘温度及时间分别为160℃和3min时整理工艺最佳.处理后的织物表面被含有90nm左右的纳米SiO2粒子的聚合物薄膜覆盖,其防水等级为90分,水的静态接触角为141°.  相似文献   

11.
Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free emulsion polymerization when the conception of particle design and polymer morphology was adopted. Moreover, the influence of mole ratio of BA to MAA, pH value on the oligomer was studied. And the effects of the added amount of oligomer, self-crosslinked monomer and HFBA, mass ratio of BA to MMA, reaction temperature and the initiator on the polymerization technology and the performance of the product, were investigated and optimized. The structure and performance of the fluorocarbon polymer emulsion were characterized and tested with FTIR, TEM, MFT and contact angle and water absorption of the latex film. The experimental results show that the optimal conditions for preparing fluorocarbon polymer emulsion are as follows: for preparing the oligomer, mol ratio of BA to MAA is equal to 1.0: 1.60, and pH value is controlled within the range of 8.0 and 9.0; for preparing fluorocarbon polymer emulsion, the added amount of oligmer[P(BA/MANa)] is 6%; mass ratio of BA to MMA is 40: 60; the added amount of self-crosslinked monomer is 2%, the added amount of HFBA is 15%; reaction temperature is 80 °C; the mixture of potassium persulfate and sodium bisulfite is used as the initiator. The film-forming stability of the fluorocarbon polymer emulsion and the performance of the latex film, which is prepared with the soap-free emulsion polymerization, are better than that prepared with the conventional emulsion polymerization. Funded by the Jiangsu Provincial Creative Fund for Scientific and Technical Small and Medium-size Enterprise  相似文献   

12.
以4种不同Z基团结构的黄原酸酯为链转移剂,在乙酸乙酯中进行醋酸乙烯酯(VAc)的可逆加成-断裂链转移自由基聚合.结果表明,黄原酸酯的化学结构、黄原酸酯与引发剂的量比、单体质量分数等因素对聚合有显著影响.当Z基团为4-甲氧基酚基时聚合在720min内完全阻聚,这可能是由于VAc增长自由基与自身或者其他聚合物链段中黄原酸酯的苯环形成电子转移络合物而造成活性中心稳定所致;当黄原酸酯的Z基团分别为甲氧基、乙氧基、异丙氧基时,可顺利实现VAc的可控自由基聚合,聚醋酸乙烯酯(PVAc)的数均相对分子质量随转化率线性增加,聚合物相对分子质量分布指数小于1.4.  相似文献   

13.
以自制大分子单体聚乙二醇单甲醚丙烯酸酯(MPEGAA)、丙烯酸(AA)和自制丙烯酰氧乙基三甲基氯化铵(DAC)为原料,通过反相乳液聚合技术,制备了两性聚羧酸高聚物MPEGAA/AA/DAC.采用傅里叶红外光谱法(FTIR)、核磁共振碳谱(13C NMR)方法对两性聚羧酸高聚物的结构和组成进行了表征,考察了反相乳液聚合条件对单体转化率及90 min内水泥净浆流动度保持率的影响,并对添加了质量分数为0.20%两性聚羧酸高聚物MPEGAA/AA/DAC混凝土的性能进行了探讨.结果显示,当选用单体质量分数为40%,n(AA)/n(MPEGAA)=3,n(DAC)/n(MPEGAA)=0.5,占油相质量3.5%的Span-80/Tween-80为乳化剂,油水体积比Vo/Vw=0.45,占单体总质量1.5%的2,2’-偶氮二异丁腈(AIBN)为引发剂,引发温度为50 ℃,反应时间为6 h时,制得的两性聚羧酸高聚物具有优越的保塑性能和较高的早期抗压强度性能.  相似文献   

14.
以甲基丙烯酸甲酯(MMA)为硬单体、丙烯酸丁酯(BA)为软单体、丙烯酸(AA)为功能单体、甲基丙烯酸乙酰乙酰氧基乙酯(AAEM)为交联单体、过氧化苯甲酸叔丁酯为引发剂、乙二醇丁醚为溶剂,通过自由基溶液聚合经转相方式制备了自交联型丙烯酸酯分散体,该分散体在烘烤条件下不需要外加交联剂即可发生自交联反应.研究了丙烯酸、甲基丙...  相似文献   

15.
考察了以K_2S_2O_8-NaHSO_3为引发剂,PVA为乳化剂时AN-VAc进行乳液共聚,研究了各种因素对AN与VAc共聚的影响。试验结果表明,聚合速度随引发剂、乳化剂及单体比AN/VAc的增加而增加,也随温度升高而增加。共聚物的特性粘度随乳化剂浓度增加而增大,随引发剂AN/VAc值增加及温度升高而降低。校适宜的聚合条件为温度50~60℃,引发剂的质量分数为0.4%~1.5%。乳化剂的质量分数为0.4%~0.6%,单体配比AN/VAc在1:2~1:6之间、其转化率在71%以上。  相似文献   

16.
以聚醚酰亚胺(PEI)成膜材料,以N-甲基-2-吡略烷酮(NMP)为极性溶剂,以乙二醇二甲醚(DGDE)为挥发性不良溶剂,以磷酸(H3PO4)为不挥发性非溶剂,以聚乙二醇(PEG1 000)为添加剂,以水为凝胶介质,通过干/湿相转化法制备不对称纳滤膜.采用均匀设计法对影响膜性能的主要因素进行了研究,建立了膜性能的回归方程,得到了膜性能与各因素之间的定性和定量关系.增加铸膜液中PEI、H3PO4、DGDE的含量,或者延长蒸发时间,均可提高膜的截流性能,同时也减小膜的水通量;增加PEG1000的含量,能有效地提高膜的水通量.  相似文献   

17.
以成分相对简单的轻质油(V(石油醚):V(苯)=9:1)作为模拟油取代成分复杂的原油配制模拟采出水,详细探究了驱油剂影响聚合物/表面活性剂二元复合驱采出水乳化稳定性的机理。采用超低界面张力仪、Zeta电位分析仪和界面流变仪对油水界面张力、油滴表面Zeta电位和油水界面流变进行测定,研究了部分水解聚丙烯酰胺(HPAM,聚合物)、石油磺酸盐(WPS,表面活性剂)和矿化度对模拟采出水油水分离性能的影响。研究结果表明:WPS能够降低油水界面张力,使模拟采出水更加稳定。HPAM能够增加模拟采出水体相黏度,但对其最终乳化稳定性影响较小。矿化度增加显著增强了模拟采出水乳化稳定性,从而为进一步加深对采出水乳化稳定性的研究提供借鉴。  相似文献   

18.
提出了一种新的通过测量油滴粒径变化来表征油水乳状液动态特性的方法,采用粒度分析仪测量了不同体系模拟油水乳状液油滴粒径的变化。比较了十二烷基苯磺酸钠(SDBS)、壬基酚聚氧乙烯醚(NP-10)和乙氧基化烷基硫酸钠(AES)所形成模拟乳状液的动态特性,测定了聚合物和乙醇在复合体系中对乳化过程的影响,并初步探讨了作用机理。结果表明:该方法不仅可以反映出不同体系的油水乳化速度,而且可以比较乳状液中油滴的粒径大小及其随时间变化的规律,这对于研究实际驱油过程中乳状液的形成和稳定具有重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号