首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
非对称光纤反射镜的可调谐光纤激光器   总被引:1,自引:0,他引:1  
提出一种非对称窄带光纤环形反射镜结构的可调谐掺铒光纤激光器。980nm泵浦光对掺铒有源光纤进行抽运,高双折射光纤、偏振控制器(PC)和光纤耦合器构成窄带光纤反射镜,窄带光纤反射镜和普通光纤反射镜组成激光谐振腔,利用窄带光纤反射镜工作带宽纳米量级的特性得到单纵模激光。调整偏振控制器改变反射镜对不同波长的反射率,实现可变波长的激光输出。实验表明,该激光器的工作带宽为8nm,120mW泵浦光条件下最大输出功率为4mW,3dB带宽(脉冲的半高宽度)小于0.2nm,边模抑制比为20dB以上,在1527nm~1535nm的波长范围内观察到稳定激光输出。  相似文献   

2.
The end iris ridge waveguide couplers are used to couple power to accelerator cavities through a reduced size coupling port. However, higher electric and magnetic fields due to reduced size lead to strict requirements on dimensional tolerances during coupler fabrication process. It is shown by detailed parametric analysis that even small dimensional changes during manufacturing or operation can lead to undesired shift in design frequency and deterioration of return loss. Hence, transmitted power testing of two couplers connected back to back without an intermediate cavity cannot be carried out. Here, we propose cylindrical static tuners on impedance matching section to relax the dimensional tolerance requirements. It is also shown that an iris coupled coupler-cavity system is more tolerant towards coupler dimensional changes than a stand-alone coupler. However, same tuners can find use for tuning the coupling coefficient of coupler-cavity system. The proposed tuning scheme is expected to reduce the coupler manufacturing costs and provide an useful alternative for coupling coefficient tuning over iris machining.  相似文献   

3.
We report the use of extreme broadband, high reflectivity >99.5%, optical parametric oscillator (OPO) cavity mirrors. A continuous-wave, doubly resonant, OPO demonstrated tuning over a range of 791-1620 nm with a single mirror set. Wavelength tuning was performed by temperature tuning the nonlinear material of lithium triborate. Narrow linewidth oscillation was confirmed throughout the tuning range, and threshold pump power increased gradually from 50 mW near the degeneracy to 800 mW at the tuning band edge in a double-pass pumping configuration.  相似文献   

4.
An innovative non-mechanical and low power consumption tunable external cavity laser (ECL) using liquid crystal tuning elements is proposed. This contains a gain chip, a collimating lens, tuning elements and a partial-reflection mirror. The proposed tunable ECL can achieve both coarse tuning and fine tuning, and it is designed to lase at wavelength matching the International Telecommunication Union (ITU) channels, which is one of the important requirements in optical communication. The tuning elements include an ITU etalon, a liquid crystal Fabry–Pérot interferometer (LC-FPI) and a fine tuner. Only two parameters are required to tune the wavelength over the whole C-band, namely the voltage over the LC-FPI and the fine tuner. This high reliability cost-effective design proposes a theoretical tuning range of about 80?nm. The LC tuning elements including LC-FPI and fine tuner has been fabricated and tested.  相似文献   

5.
The continuous tuning range of an external-cavity diode laser can be extended by making small corrections to the external-cavity length through an electronic feedback loop so that the cavity resonance condition is maintained as the laser wavelength is tuned. By maintaining the cavity resonance condition as the laser is tuned, the mode hops that typically limit the continuous tuning range of the external-cavity diode laser are eliminated. We present the design of a simple external-cavity diode laser based on the Littman-Metcalf external-cavity configuration that has a measured continuous tuning range of 1 GHz without an electronic feedback loop. To include the electronic feedback loop, a small sinusoidal signal is added to the drive current of the laser diode creating a small oscillation of the laser power. By comparing the phase of the modulated optical power with the phase of the sinusoidal drive signal using a lock-in amplifier, an error signal is created and used in an electronic feedback loop to control the external-cavity length. With electronic feedback, we find that the continuous tuning range can be extended to over 65 GHz. This occurs because the electronic feedback maintains the cavity resonance condition as the laser is tuned. An experimental demonstration of this extended tuning range is presented in which the external-cavity diode laser is tuned through an absorption feature of diatomic oxygen near 760 nm.  相似文献   

6.
A simple fiber laser configuration based on a semiconductor optical amplifier (SOA) is proposed for obtaining multi-wavelength oscillation at room temperature, in which a Sagnac loop mirror is used as the wavelength selective component. The SOA has a flat gain of approximately 23dB within a bandwidth of 12 nm at a small input signal power. The loop mirror was constructed using a 3dB coupler and polarization maintaining fiber (PMF). The output spectrum of the proposed laser can be adjusted by controlling the bias current of the SOA and is quite stable at room temperature. At a bias current of 150 mA, six lines are obtained with at least ?40 dBm output power and 25dB signal-to-noise ratio (SNR). The channel spacing and number of lines is determined by the length of polarization maintaining fiber (PMF) used in the loop mirror. The channel spacing of the proposed laser is 1.49 nm with a PMF 3 m. The multi-wavelength comb output can also be tuned by adjusting the operating temperature of the SOA. The multi-wavelength laser has the advantage of a simple configuration, stability at room temperature, a broad wavelength band, and no need for optical pump lasers.  相似文献   

7.
A new method of tuning a multi-wavelength Brillouin-erbium fiber laser (BEFL) within a Fabry–Perot cavity by incorporating a low-cost biconic tapered fiber is reported. The biconic tapered fiber was fabricated using a flame elongation technique and it was incorporated into the BEFL system to position the self-lasing cavity modes over a tuning range of 5.5 nm within the erbium-doped fiber gain profile. By injecting the Brillouin pump near to the tunable self-lasing cavity modes, it suppresses the modes and generates stable cascaded Brillouin–Stokes lines with more than 20 dB signal-to-noise ratio.  相似文献   

8.
Simple, inexpensive wavemeter implemented with a fused fiber coupler   总被引:2,自引:0,他引:2  
Dimmick TE  Weidner J 《Applied optics》1997,36(9):1898-1901
A simple, inexpensive wavemeter for measuring the wavelength of optical fiber coupled light sources is described. We determined the wavelength by measuring the wavelength-dependent coupling coefficient of a fused fiber coupler. A prototype device covering the wavelength range of 1500-1600 nm was assembled and tested in the laboratory. The wavemeter had a wavelength uncertainty of less than 0.087 nm over a wavelength range of 1530-1570 nm. The dominant source of error in the test was found to be due to the presence of broadband amplified spontaneous emission (ASE) in the laser output. It is expected that the accuracy of the device can be increased significantly by the introduction of a band-limiting filter to reduce the ASE level.  相似文献   

9.
Anctil G  McCarthy N  Piché M 《Applied optics》2000,39(36):6787-6798
We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems (C = 0) or self-imaging systems (B = 0) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.  相似文献   

10.
Zhou K  Ngo QN  Zhang X  Jin Z  Zhou D  Liu D 《Applied optics》2007,46(23):5617-5621
A method to realize room-temperature operation of a multifrequency Er-doped fiber laser with low-frequency shift feedback placed within a linear laser cavity is theoretically proposed and experimentally demonstrated. Simultaneous multiwavelength lasing with 0.5 nm wavelength spacing is experimentally demonstrated by applying a sinusoidal signal of 10 kHz to a fiber phase modulator inserted within the linear cavity to prevent single wavelength steady-state oscillation. In the linear cavity, an all-polarization-maintaining fiber Sagnac loop is used as a periodic filter, and a single-mode fiber loop with a polarization controller is used as a partial reflector and also as an output port.  相似文献   

11.
A calcium atomic beam has been decelerated by a single extended-cavity diode laser, frequency doubled to 423 nm. A potassium niobate crystal is placed in an external power buildup cavity, and the second-harmonic laser beam, counterpropagating with the atomic beam, is tuned into resonance with the strong (1)S(0)-(1)P(1) transition of calcium. For input power of 78 mW at 846 nm, we generate 22 mW at 423 nm after correction for the reflectivity of our cavity output coupler. To keep the atoms always in resonance during the deceleration process, the Zeeman tuning technique was used.  相似文献   

12.
A compact fiber laser is demonstrated with use of a Gires-Tournois compensator and a short length (2-4 cm-long) of highly doped ytterbium (Yb) fiber providing net anomalous group-velocity dispersion. With use of a novel semiconductor saturable absorber mirror based on GaInNAs structure, self-started 1.5-ps-pulse mode-locked operation was obtained at 1023 nm with a repetition rate of 95 MHz. A mode-locked Yb-doped fiber laser was developed without the use of any dispersion compensation technique. Overall group-velocity dispersion was minimized by using a short length of highly doped Yb fiber in a compact amplifying loop cavity. Self-started mode-locked operation was obtained in 980-1030-nm wavelength range with a fundamental repetition rate of 140 MHz.  相似文献   

13.
We present detailed investigations of the spectral dependencies of the transmission of a fiber optical loop mirror (FOLM) consisting of a coupler with output ports spliced at arbitrary angles to a high-birefringence (Hi-Bi) fiber. The application for dual-wavelength lasers is discussed. For this aim, the spectral dependence of the reflection is tuned by the temperature of the Hi-Bi fiber that allows a fine adjustment of the cavity loss for generated wavelengths. The ratio between maximum and minimum reflection can be adjusted by the twist angle of the fiber at the splices, which also provides useful possibilities for the adjustment of cavity losses. We used the twist and temperature variation of the Hi-Bi fiber to change the operation from single wavelength to stable dual-wavelength generation with either equal or unequal powers of wavelengths.  相似文献   

14.
Zhou DP  Wei L  Liu WK 《Applied optics》2012,51(14):2554-2558
Self-mode locking effect in a wideband tunable graphene-based passively Q-switched erbium-doped fiber laser has been observed experimentally. Q-switching is achieved by using graphene as a saturable absorber, while a tunable bandpass filter with a narrow bandwidth is used to obtain wideband tunability. We propose to suppress the modulation on each pulse from self-mode locking by introducing three subring resonators constructed with three 3 dB couplers into the laser ring cavity. Moreover, the laser output characteristics with respect to pump power are studied in detail. A stable Q-switched erbium-doped fiber laser with a tunable range from 1522 nm to 1568 nm is demonstrated experimentally.  相似文献   

15.
In this paper, we report a long cavity passively mode-locked fibre laser. The proposed mode locker is a reflective long cavity non-linear optical loop mirror (NOLM) which consists of a 50:50 coupler and 2-km single-mode fibres. The laser achieves stable mode locking at a fundamental repetition rate of 100 kHz. The rectangular pulses operating in dissipative soliton resonance region is generated in the laser. The relationship between the pulse duration and the pump power is investigated in detail. When the pump power is 200 mW, the laser generates rectangular pulses at 1565.57 nm (central wavelength) with pulse duration of 81.5 ns. The single pulse energy as high as 33.34 nJ is obtained. The results show that the reflective NOLM is an efficient mode locker and useful for the generation of high energy pulse.  相似文献   

16.
A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.  相似文献   

17.
Application of a metallic thin-film selector to the single-frequency oscillation of a diode-pumped Nd:YVO(4) laser has been investigated theoretically and experimentally. We show that a chromium thin-film selector with a thickness between 8 and 9 nm provides single-frequency output within a power range of 0.6 W. Single-frequency operation, slow smooth tuning, or chirping was realized by the output coupler movement with a piezoceramic transducer. Chirping at a repetition rate of 0.5 kHz in the 0.5-10-GHz range was achieved. Physical and technical limitations caused by the wide-gain bandwidth, thermal effects, and mechanical vibrations of cavity elements are discussed.  相似文献   

18.
We demonstrate the use of both 510.6- and 578.2-nm components and the extension of the tuning range of a Rhodamine 6G dye laser in a novel coupled resonator scheme. Rhodamine 6G is pumped by 510.6-nm light in one resonator and Sulforhodamine B is pumped by 578.2 nm in the other. The spectral tuning range of 564-609 nm of the Rhodamine 6G laser is extended up to 640 nm. A two-mirror arrangement ensures continuous tuning across the spectral ranges of the two dyes by rotation of a single plane mirror.  相似文献   

19.
Passively Q-switched Tm(3+)-doped silica fiber lasers   总被引:1,自引:0,他引:1  
Jackson SD 《Applied optics》2007,46(16):3311-3317
By splicing on a length of Ho(3+)-doped silica fiber onto a diode-pumped double-clad Tm(3+)-doped silica fiber, stable passive Q switching of the Tm(3+)-doped silica fiber laser is demonstrated. The formation of Q-switched pulses was found to depend on both the length and the position of the Ho(3+)-doped silica fiber that was inserted into the fiber laser cavity. For stable Q-switched pulse generation, Ho(3+)-doped silica fiber lengths shorter than twice the absorption depth must be used. For long Ho(3+)-doped silica fiber lengths, randomly generated pulses are observed at operating wavelengths longer than 2090 nm, which are attributed to intracavity pumping of the Ho(3+)-doped silica fiber.  相似文献   

20.
A Bi2O3-based erbium-doped fiber (Bi-EDF) ring laser with a 70?nm tunable range is demonstrated with a 49?cm long Bi-EDF in which tuning range can be extended to larger than 100?nm using an optical switch to alter the length of Bi-EDF in the laser cavity. With an extinction ratio of better than 60?dB throughout the entire tuning range, the measured FWHM of laser lines are measured to be 0.09?nm. In addition, the common amplification parameters are measured and studied in detail for various pumping configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号