首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李梅  杜芳艳  温俊峰  吴欢欢 《应用化工》2014,(12):2285-2288
用离子液体1-甲基-3-丁基咪唑六氟磷酸盐([bmim]PF6)作修饰剂制备了离子液体修饰碳糊电极(IL/CPE)。在0.2 mol/L B-R(p H 3.2±0.1)缓冲溶液中,采用循环伏安法研究了槲皮素在该修饰电极上的电化学行为,建立了测定槲皮素的新方法。研究表明,槲皮素在IL/CPE电极上的氧化、还原峰电位差比在裸碳糊电极(CPE)上的小,而峰电流却显著增加,说明IL/CPE对槲皮素有电催化作用;在循环伏安曲线上,槲皮素的峰电流与其浓度在0.1~50μmol/L呈良好的线性关系,其线性方程为ip(μA)=3.941 3+0.211 9 c(μmol/L),线性相关系数为0.999 4,检出限为3.0×10-8mol/L。该法用于测定海红果中的槲皮素取得了较好的结果。  相似文献   

2.
Cobalt phthalocyanine (CoPc) films were deposited on the surface of a screen-printed carbon electrode using a simple drop coating method. The cyclic voltammogram of the resulting CoPc modified screen-printed electrode (CoPc/SPE) prepared under optimum conditions shows a well-behaved redox couple due to the (Co(I)/Co(II)) system. The CoPc/SPE surface demonstrates excellent electrochemical activity towards the oxidation of sulfur in a 0.01 mol·L(-1) NaOH. A linear calibration curve with the detection limit (D(L), S/N = 3) of 0.325 mg·L(-1) was achieved by CoPc/SPE coupled with flow injection analysis of the sulfur concentration ranging from 4 to 1120 mg·L(-1). The precision of the system response was evaluated (3.60% and 3.52% RSD for 12 repeated injections), in the range of 64 and 480 mg·L(-1) sulfur. The applicability of the method was successfully demonstrated in a real sample analysis of sulfur in anti-acne creams, and good recovery was obtained. The CoPc/SPE displayed several advantages in sulfur determination including easy fabrication, high stability, and low cost.  相似文献   

3.
Here we investigated the analytical performances of the bismuth-modified zeolite doped carbon paste electrode (BiF-ZDCPE) for trace Cd and Pb analysis. The characteristics of bismuth-modified electrodes were improved greatly via addition of synthetic zeolite into carbon paste. To obtain high reproducibility and sensitivity, optimum experimental conditions for bismuth deposition were studied. Voltammetric responses of the BiF-ZDCPEs prepared with different ratios of zeolite, carbon powder, and silicone, were examined under same conditions. The in situ plated (zeolite/graphite powder/silicone, 10/190/80 w/w) BiF-ZDCPEs exhibited the most sensitive response to Cd and Pb in 0.10 M acetate buffer (pH 4.5). The detection limits of the modified electrode were 0.08 μg L−1 for Cd(II) and 0.10 μg L−1 for Pb(II) based on three times the standard deviation of the baseline with a preconcentration time of 120 s under optimal conditions, respectively. The modified electrode showed well linear response to both Cd(II) and Pb(II) over the concentration range from 1.0 to 20.0 μg L−1. The BiF-ZDCPEs were successfully applied to the determination of Cd(II) and Pb(II) in real samples, and the results were in agreement with those of atomic absorption spectroscopy (AAS).  相似文献   

4.
Functionalized polypyrrole film were prepared by incorporation of [Fe(CN)6]4− as a doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode in an aqueous solution by potentiostatic method. The electrochemical behavior of dopamine (DA) and ascorbic acid (AA) in one solution was studied at the surface of bare and modified carbon paste electrodes using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differntial pulse voltammetry (DPV) methods. The well separated anodic peaks for oxidation of DA and AA were observed at the surface of the modified carbon paste electrode under optimum condition (pH 6.00), which can be used for determination of these species simultaneously in mixture by LSV and DPV methods. The linear analytical curves were obtained in the ranges of 0.10-1.00 mM and 0.10-0.95 mM for ascorbic acid and 0.10-1.20 mM and 0.20-0.95 mM for dopamine concentrations using LSV and DPV methods, respectively. The detection limits (2σ) were determined as 3.38 × 10−5 M and 1.34 × 10−5 M of ascorbic acid and 3.86 × 10−5 M and 1.51 × 10−5 M of dopamine by CV and DPV methods.  相似文献   

5.
The electrooxidation of d-penicillamine (d-PA) was studied in the presence of ferrocyanide as a homogeneous mediator at the surface of a carbon paste electrode in aqueous media using cyclic voltammetry (CV) and chronoamperometry. Under optimum pH in CV the oxidation of d-PA occurs at a potential about 380 mV less positive than that in the absence of ferrocyanide. The catalytic oxidation peak current was dependent on the d-PA concentration and a linear calibration curve was obtained in the ranges 4.0 × 10−5–2.0 × 10−3 M and 8.0 × 10−6–1.8 × 10−4 M of d-PA with CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.9 × 10−5 and 3.2 × 10−6 M by CV and DPV methods. This method was also used for the determination of d-PA in pharmaceutical preparations by the standard addition method.  相似文献   

6.
An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H+ produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications.  相似文献   

7.
The oxygen reduction reaction (ORR) at cobalt tetraazaanulene (CoTAA) modified electrodes was investigated. As a first approach, modified electrodes were prepared by electrodeposition of CoTAA on glassy carbon (GC). The modification of the GC surface was monitored by u.v.–vis. differential reflectance spectroscopy (UVDRS). The recorded spectra (i.e., absorbance as a function of wavelength and time) showed that the electrodeposition of CoTAA at 0.8 V vs Ag|AgCl, that is, at a potential where the TAA ligand is oxidized to TAA+, seems to produce a thin polymer film. Starting from these preliminary results, porous rotating disc electrodes (RDEs) were prepared by electrodeposition of CoTAA (0.8 V vs Ag|AgCl, 1 min) on graphite powder embedded in a recast Nafion® film. The use of a porous RDE allowed comparison of the activity and selectivity of Pt nanoparticles and CoTAA for the ORR under experimental conditions close to those of a fuel cell cathode, that is, at the catalyst|Nafion® interface. The activity towards the ORR of a porous electrode modified by electrodeposition of CoTAA is not affected when methanol is present in the electrolyte phase, whereas a noticeable decrease in the activity of Pt-based oxygen cathodes was observed under the same conditions. Half-cell life tests showed that CoTAA-modified electrodes and Pt-based electrodes have a comparable stability over a period of 90 min.  相似文献   

8.
The catalytic oxidation of hydrazine was investigated by a cobalt(II) bis (benzoylacetone) ethylenediimino multi wall carbon nanotube-modified carbon paste electrode (Co(II)BBAEDI-MWCNT-MCPE) as a highly sensitive electrochemical sensor. The effect of variables such as pH and modifier percent on cyclic voltammograms peak current was optimized. The modified electrode showed very efficient electrocatalytic activity for anodic oxidation of hydrazine in 0.1 M phosphate buffer solution (pH 7.0). Anodic peak potential of hydrazine oxidation at the surface of modified electrode shifts by about 500 mV toward negative values compared with that on the bare electrode. The diffusion coefficient and electron transfer coefficient of hydrazine were obtained using electrochemical approaches. The Co(II)BBAEDI-MWCNT-MCPE showed good reproducibility (RSD < 3.3%). The electrocatalytic current increased linearly with the hydrazine concentration in the range of 0.3–70.0 μM and detection limit was 0.1 μM. The effect of various interferences on the hydrazine peak current was studied. This method was applied to determine hydrazine in water samples.  相似文献   

9.
A promethazine (PMZ) molecularly imprinted polymer (MIP) and a non-imprinted polymer (NIP) were synthesized by two different formulations of methacrylic acid-ethylene glycol dimethacrylate (MAA-EGDMA) and vinyl benzene-divinyl benzene (VB-DVB). Then, the MIPs were used to modify the carbon paste electrode (CP). The response difference between MIP-CP and NIP-CP electrodes, containing VB-DVB polymer, was higher than that for MIP-CP and NIP-CP modified with polymer of MAA-EGDMA, indicating the lower nonselective surface adsorption property of the VB-DVB based MIP. The MIP, incorporated in the carbon paste electrode, functioned as selectively recognition element and pre-concentrator agent for PMZ determination. The prepared electrode was used for PMZ measurement by the three steps procedure including analyte extraction in the electrode, electrode washing and electrochemical measurement of PMZ. It was shown that the electrode washing, after PMZ extraction, led to enhanced selectivity. Square wave voltammetry (SWV) for PMZ determination by proposed electrode was proved to be better than that of differential pulse voltammetry. Some parameters, effective on the electrode response, were optimized and then a calibration curve was plotted. Two dynamic linear range of 7 × 10−9 to 4 × 10−7 and 4 × 10−7 to 7 × 10−6 mol L−1 were obtained. The detection limit of the method was calculated equal to 3.2 × 10−9 mol L−1. This method was used successful for PMZ determination in blood serum sample.  相似文献   

10.
In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN)63− and Ru(NH3)63+ by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.  相似文献   

11.
A stable composition of hybrid copper-cobalt hexacyanoferrate (Cu-CoHCF) film was electrodeposited on a carbon paste electrode (CPE). There are a few reports for using this hybrid as a mediator, but all of them require almost 12 h conditioning time before usage. Contrary to previous reports this electrode does not require any conditioning and can be used immediately after film formation. The electrocatalytic activity of this film was investigated and showed a good electrocatalytic effect for oxidation of l-cysteine (Cys) in phosphate buffer solution (PBS) in pH range of 1-7. A linear range of 6 μM to 1 mM of Cys and an experimental detection limit of 5 μM of Cys were obtained using cyclic voltammetry method. The diffusion coefficient of Cys and catalytic rate constant for electrocatalytic reaction were also calculated. The major problem reported in electro oxidation of Cys is poisoning of electrode surface with reaction product, but in this study oxidation of Cys had no significant fouling effect on the modified electrode surface for the concentrations below 0.5 mM of Cys.  相似文献   

12.
A crystalline flake graphite electrode (GE) was impregnated with nickel particles using direct current electrochemical deposition. The particles were used for in situ growth of carbon nanotubes (CNTs) by flame synthesis with a liquid ethanol flame. The obtained electrode was characterized by X-ray diffraction, and scanning and transmission electron microscopy. The results showed that the deposited Ni catalyst crystal face was mainly (1 1 1). CNTs with a diameter of about 40 nm were uniformly grown on the GE surface. The electrochemical performance of the CNT–GE was characterized by cyclic voltammetry using a [Fe(CN)6]3−/[Fe(CN)6]4− solution, and showed a much greater electrochemical response than that obtained using a material in which CNTs were grown by catalytic chemical vapor deposition.  相似文献   

13.
14.
《云南化工》2020,(1):44-45
在集成到半导体制冷片上的504胶表面不同分区分别进行化学镀金、铂,制备了集成化的电极系统,其中化学镀金部分作为工作电极,化学镀铂部分作为对电极,将碳载铂金双金属修饰到镀金表面,制备冷热两用修饰电极,该方法利用环保的无氰化学镀技术,绿色环保,集成的电极可用于绿原酸含量测定,结合纸芯片等技术可以方便的进行含绿原酸的菊花等中药材的检测。  相似文献   

15.
A glassy carbon electrode modified with LaHCF was constructed and was characterized by cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The resulting LaHCF modified glassy carbon electrode had a good catalytic character on uric acid (UA) and was used to detect uric acid and ascorbic acid (AA) simultaneously. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards UA and AA with activation overpotential. For UA and AA in mixture, one can well separate from the other with a potential large enough to allow the determination of one in presence of the other. The DPV peak currents obtained increased linearly on the UA in the range of 2.0 × 10−7 to 1.0 × 10−4 mol/L with the detection limit (signal-to-noise ratio was 3) for UA 1.0 × 10−7 mol/L. The proposed method showed excellent selectivity and stability, and the determination of UA and AA simultaneously in urine was satisfactory.  相似文献   

16.
In this work the effect of boric acid on the nickel transport properties through an IONICS 67-HMR-412 cation-exchange membrane was evaluated by means of chronopotentiometry. Nickel chloride solutions with and without boric acid were investigated. The obtained results showed that the addition of boric acid to a nickel chloride solution does not affect the limiting current density value nor the nickel transport number through the membrane. The obtained results also revealed that, under very high current densities, the secondary transfer phenomenon associated to water splitting occurs when nickel chloride solutions are employed, and a bipolar membrane structure is formed, resulting from a Ni(OH)2 precipitation on the membrane surface. The addition of boric acid to the nickel chloride solution can minimize or avoid this phenomenon depending on the boric acid concentration in the solution.  相似文献   

17.
Optical roughness of a pyrolytic graphite electrode with basal (PGEb) and edge orientation (PGEe), a glassy carbon electrode (GCE), and the same electrodes modified with mercury (MFE) was studied by an optical diffractive element (DOE) based sensor. Electrochemical characterisation of these electrodes used was performed by cyclic voltammetry (CV) and capacitance measurements (C-E curves and electrochemical impedance spectroscopy, EIS). The kinetics of phase transients of adenosine adsorbed on PGEb, and GCE modified with mercury layer of different thicknesses (thickness was changed from 0.02 to 2 μm) was studied by chronoamperometry (j-t curves) and capacitance measurements (C-E curves). In acidic (pH 5) solution adenosine forms two different two-dimensional (2D) physisorbed condensed layers on the MFE. The first of these (region I) is located at more positive potential; the centre of this adlayer is situated around −0.4 V. The second 2D physisorbed film (region III) is formed at more negative potentials; the centre of the region III is around −1.3 V. The 2D condensed films (adlayer I and III) of adenosine still exist on the PGEb substrate modified by 0.02 μm thick mercury layer. Adlayers III and I of adenosine exist on the GCE modified with mercury layer down to 0.02 and 0.2 μm, respectively. The kinetics of phase transients of the adenosine films taking place by a potential jump from dilute adsorption region (state II and IV) to the 2D physisorbed film (region I and III) at the PGEb and GCE substrates modified with mercury (Hg-PGEb and Hg-GCE) were studied, respectively. During both of the phase transients of IV→III and II→III of adenosine a polynucleation and growth process on both the Hg-PGEb and Hg-GCE was detected. The phase transients of II→I are characterised by an exponential decay of the current without the current maximum (the adsorption process took place only). It was observed that the phase transients of IV→III are the fastest at the HMDE and gradually slow down on 2 μm Hg-GCE and 2 μm Hg-PGEb, respectively.  相似文献   

18.
The rate and mechanism of copper, cobalt, nickel and zinc transport through a supported liquid membrane containing di(2-ethylhexyl) phosphoric acid as a mobile carrier were studied, respectively. The permeation rate equations have been derived taking into account aqueous film diffusion, interfacial chemical reaction and membrane diffusion as simultaneous controlling steps. The possible rate-controlling steps were estimated by comparing the relative values of the three successive resistances. The measured permeation rates of zinc agreed well with the proposed mechanism in this study.  相似文献   

19.
Vanadium (V) was used as the central heteroatom in the synthesis of the Keggin-type polyoxometalate {[CH3(CH2)7]4N}3[VMo12O40] (1). This compound was characterized by elemental analysis and single-crystal X-ray diffraction. Compound 1 was used as a bulk-modifier to fabricate the chemically modified ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) carbon paste electrode (1-ILCPE) by direct mixing. The bulk-modified 1-ILCPE showed well-defined cyclic voltammograms with four reversible redox couples in H2SO4 + Na2SO4. The first wave could be ascribed to the reduction of the central V and the last three waves corresponded to the redox processes of the peripheral Mo atoms. The 1-ILCPE presents good electro-catalytic activity not only toward the oxidation of l-cysteine, which is attributed to the function of the central V, but also toward the reduction of hydrogen peroxide, which is attributed to the function of the Mo atoms. Compared with the conventional carbon paste electrode (CPE), the excellent experimental results suggest that the newly developed paste electrode holds great promise in the design of electrochemical devices, such as sensors and biosensors. The promising results are ascribed to the use of an ionic liquid, which forms an excellent charge-transfer bridge and wide electrochemical windows in the bulk of carbon paste electrode.  相似文献   

20.
A promising electrochemical sensor was developed based on a layer by layer process by electro-polymerization of pyrrole in the presence of new coccine (NC) as dopant anion on the surface of the multi-walled carbon nanotubes (MWCNTs) pre-coated glassy carbon electrode (GCE). The modified electrode was used as a new and sensitive electrochemical sensor for voltammetric determination of sumatriptan (SUM). The electrochemical behavior of SUM was investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results showed a remarkable increase (∼12 times) in the anodic peak current of SUM in comparison to the bare GCE. The effect of experimental variables such as, drop size of the casted MWCNTs suspension, pH of the supporting electrolyte, accumulation conditions and the number of cycles in the electro-polymerization process on the electrode response was investigated. Under the optimum conditions, the modified electrode showed a wide linear dynamic range of 0.02–10.0 μmol L−1 with a detection limit of 6 nmol L−1 for the voltammetric determination of SUM. The prepared electrode showed high sensitivity, stability and good reproducibility in response to SUM. This sensor was successfully applied for the accurate determination of trace amounts of SUM in pharmaceutical and clinical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号