首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An isothermal section of the phase diagram of the system Co-Sb-O at 873 K was established by isothermal equilibration and XRD analyses of quenched samples. The following galvanic cells were designed to measure the Gibbs energies of formation of the three ternary oxides namely CoSb2O4, Co7Sb2O12 and CoSb2O6 present in the system.
where 15 CSZ stands for ZrO2 stabilized by 15 mol % CaO. The reversible emfs obtained could be represented by the following expressions.
The standard Gibbs energies of formation of CoSb2O4, Co7Sb2O12 and CoSb2O6 were computed from the emf expressions:
The reasonability of the above data were assessed by computing the entropy change for the solid-solid reactions leading to the formation of ternary oxides from the respective pairs of constituent binary oxides.  相似文献   

2.
The present work reports equilibration kinetics for (La0.8,Sr0.2)CoO3(LSC) and (La0.72,Sr0.18)FeO3(LSF) in the temperature range 876–1114 K using a gravimetric method. Chemical diffusion determined in this way that depends on oxygen partial pressure, can be expressed by the following temperature dependence at low and high O2), respectively, for LSC:
and for LSF:
  相似文献   

3.
Phase relations in the system Cu-La-O at 1200 K have been determined by equilibrating samples of different average composition at 1200 K, and phase analysis of quenched samples using optical microscopy, XRD, SEM and EDX. The equilibration experiments were conducted in evacuated ampoules, and under flowing inert gas and pure oxygen. There is only one stable binary oxide La2O3 along the binary La-O, and two oxides Cu2O and CuO along the binary Cu-O. The Cu-La alloys were found to be in equilibrium with La2O3. Two ternary oxides CuLaO2 and CuLa2O4+ were found to be stable. The value of varies from close to zero at the dissociation partial pressure of oxygen to 0.12 at 0.1 MPa. The ternary oxide CuLaO2, with copper in monovalent state, coexisted with Cu, Cu2O, La2O3, and/or CuLa2O4+ in different phase fields. The compound CuLa2O4+, with copper in divalent state, equilibrated with Cu2O, CuO, CuLaO2, La2O3, and/or O2 gas under different conditions at 1200 K. Thermodynamic properties of the ternary oxides were determined using three solid-state cells based on yttria-stabilized zirconia as the electrolyte in the temperature range from 875 K to 1250 K. The cells essentially measure the oxygen chemical potential in the three-phase fields, Cu + La2O3 + CuLaO2, Cu2O + CuLaO2 + CuLa2O4 and La2O3 + CuLaO2 + CuLa2O4. Although measurements on two cells were sufficient for deriving thermodynamic properties of the two ternary oxides, the third cell was used for independent verification of the derived data. The Gibbs energy of formation of the ternary oxides from their component binary oxides can be represented as a function of temperature by the equations:
  相似文献   

4.
Structural, electrical and Mossbauer studies were carried out for the system Li0.5Fe x Ga2.50-xO4. All the compounds with 0 ? x? 2.5 crystallised with cubic spinel structure. Lattice constant values calculated from XRD analysis were found to increase with increasing x. X-ray intensity calculations indicated that Li1+ occupies only the octahedral site and Ga3+ and Fe3+ ions occupy both octahedral and tetrahedral sites. Activation energy and thermoelectric coefficient values decreased with increasing values of x. All the compounds studied were p-type semiconductors and possess low mobility values of 10?7-10?9 cm2V?1 s?1. Mossbauer data show the presence of iron in the Fe3+ state and the isomer shift values for all the compositions of the system are within the range of high spin ferric compounds. The probable ionic configuration for the system is suggested as: $${\text{Ga}}_{{\text{1 - }}\alpha }^{{\text{3 + }}} {\text{Fe}}_\alpha ^{{\text{3 + }}} [Li_{0.5}^1 {\text{Fe}}_{{\text{x - }}\alpha }^{{\text{3 + }}} {\text{Ga}}_{{\text{2}}{\text{.5 - x + }}\alpha }^{\text{3}} ] {\text{O}}_{\text{4}}^{{\text{2 - }}} $$   相似文献   

5.
6.
The pseudomorphic replacement of mineral barite (BaSO4) crystals into barium carbonate was investigated in the present work by using carbonated alkaline hydrothermal fluids. Hydrothermal treatments were carried out over the temperature range from 150 up to 250 °C for intervals between 1 and 192 h, with different filling ratios (40–70%), and molar ratios of 1, 5, and 10. The reaction products were characterized by XRD and SEM techniques. The chemical reactivity of mineral barite crystals was markedly limited at temperatures below 200 °C, and only a tiny BaCO3 layer on the surface of the original BaSO4 crystal was formed on the crystal treated for 192 h. The rate of the pseudomorphic conversion of BaSO4 into BaCO3, was accelerated by increasing the reaction temperature and the molar ratio . Powder X-ray diffraction results showed that under hydrothermal conditions the replacement of ions by ions, in barite crystals was completed at 250 °C with a molar ratio = 10 for an interval of 192 h, resulting in the Witherite structure. The morphology of the completely converted BaCO3 at 250 °C in a Na2CO3 solution for 192 h, showed that the conversion proceed without severe changes of the original shape and dimension of the original crystal, similar to that observed in mineral pseudomorphic replacement process.  相似文献   

7.
The mechanism of the reduction of carbon/alumina powder mixture in a flowing nitrogen stream was studied. Five steps were found to be involved in the overall reaction. $$\begin{gathered} Al_2 O_{3f} (s) + 2C_f (s)\mathop \to \limits^{k_1 } Al_2 O(g) + 2CO(g) \hfill \\ Al_2 O(g) + solid surface\mathop \rightleftharpoons \limits_{k_2^\prime }^{k_2 } [Al_2 O]_s \hfill \\ [Al_2 O]_s + CO(g) + N_2 (g)\mathop \to \limits^{k_3 } 2AlN(s) + CO_2 (g) \hfill \\ CO_2 (g) + C_f (s)\mathop \rightleftharpoons \limits_{k_4^\prime }^{k_4 } CO(g) + [O]_c \hfill \\ [O]_c \mathop \to \limits^{k_5 } CO(g) \hfill \\ \end{gathered}$$ The consumption rates of Al2O3 and carbon, and the production rate of AIN, were determined to be $$\begin{gathered} \frac{{d[Al_2 O_3 ]}}{{dt}} = - 143.88(1 + m)exp( - 290 580/RT) [Al_2 O_3 ][C]^2 / \hfill \\ \left\{ {1 + 5.83 x 10^{14} exp( - 427 497/RT)\frac{{[CO_2 ]}}{{[CO]}}} \right\}^2 kg mol s^{ - 1} m^{ - 3} \hfill \\ \frac{{d[C]}}{{dt}} = - 409.504 exp ( - 254 500/RT) [Al_2 O_3 ][C]^2 / \hfill \\ \left\{ {1 + 5.83 x 10^{14} \exp ( - 427 497/RT)\frac{{[CO_2 ]}}{{[CO]}}} \right\}^2 kg mol s^{ - 1} m^{ - 3} \hfill \\ \frac{{d[AlN]}}{{dt}} = 53.24(1 + m) exp( - 290 580/RT) [Al_2 O_3 ][C]^2 / \hfill \\ \left\{ {1 + 5.83 x 10^{14} exp( - 427 497/RT)\frac{{[CO_2 ]}}{{[CO]}}} \right\}^2 kg mol s^{ - 1} m^{ - 3} \hfill \\ \end{gathered}$$ in the temperature range 1648–1825 K.  相似文献   

8.
Using the multiphase equilibration technique for the measurement of contact angles, the surface and grain-boundary energies of polycrystalline cubic ZrO2 in the temperature range of 1173 to 1523 K were determined. The temperature coefficients of the linear temperature function obtained, are expressed as $$\frac{{{\text{d}}\gamma }}{{{\text{d}}T}}({\text{ZrO}}_{\text{2}} ){\text{ }} = {\text{ }} - 0.431{\text{ }} \times {\text{ }}10^{ - 3} {\text{ }} \pm {\text{ }}0.004{\text{ }} \times {\text{ }}10^{ - 3} {\text{ Jm}}^{ - {\text{2}}} {\text{ K}}^{ - {\text{1}}} $$ and $$\frac{{{\text{d}}\gamma }}{{{\text{d}}T}}({\text{ZrO}}_{\text{2}} - {\text{ZrO}}_{\text{2}} ){\text{ }} = {\text{ }} - 0.392{\text{ }} \times {\text{ }}10^{ - 3} {\text{ }} \pm {\text{ }}0.126{\text{ }} \times {\text{ }}10^{ - 3} {\text{ Jm}}^{ - {\text{2}}} {\text{ K}}^{ - {\text{1}}} $$ respectively. The surface fracture energy obtained with a Vickers microhardness indenter at room temperature is found to be γ F=3.1 J m?2.  相似文献   

9.
Reaction diffusion in the Nb-Ge system was studied in the temperature range 1243 to 1723 K for diffusion couples of (pure solid Nb)-(pure liquid Ge) and (pure solid Nb)-(Ge-37.5wt % Nb liquid alloy). Growth of the NbGe2, Nb3Ge2, Nb5Ge3 and Nb3Ge layers was observed, and the growth rates of all except the Nb3Ge layer were found to conform to the parabolic law. Growth of the Nb3Ge layer was observed only along the grain boundaries in the Nb5Ge3 layer. Interdiffusion coefficients \(\tilde D\) in the NbGe2, Nb3Ge2 and Nb5Ge3 phases were determined by Heumann's method, and the temperature dependence of these was expressed by the Arrhenius equations as follows: $$\tilde D_{{\text{NbGe}}_{\text{2}} } = (6.40_{ - 1.66}^{ + 2.25} \times 10^{ - 6} exp [ - (161 \pm 4) kJ mol^{ - 1} {\text{/RT] m}}^{{\text{2 }}} \sec ^{ - 1} $$ $$\tilde D_{{\text{Nb}}_{\text{3}} {\text{Ge}}_{\text{2}} } = (2.27_{ - 0.60}^{ + 0.82} \times 10^{ - 4} exp [ - (282 \pm 4) kJ mol^{ - 1} {\text{/RT] m}}^{{\text{2 }}} \sec ^{ - 1} $$ and $$\tilde D_{{\text{Nb}}_{\text{5}} {\text{Ge}}_{\text{3}} } = (6.28_{ - 1.93}^{ + 2.78} \times 10^{ - 5} exp [ - (238 \pm 5) kJ mol^{ - 1} {\text{/RT] m}}^{{\text{2 }}} \sec ^{ - 1} $$ In addition to the binary Nb-Ge system, the reaction diffusion of (pure solid Nb)-(Cu-13 wt % Ge liquid alloy) couples was also studied. In this case, only growth of the Nb5Ge3 layer containing negligible copper content was observed.  相似文献   

10.
Single-phase nickel manganite spinels, Ni x Mn3–x O4, with 0.5 x 1, were prepared by a careful thermal processing of nickel-manganese coprecipitated oxalate precursors. Powder X-ray diffraction analysis of the spinel revealed the presence of cubic single spinel phase with parametera which decreases with nickel content. The lattice parameter variation can be explained in terms of the distribution of Ni2+ ions on the octahedral sites. Therefore, a fine analysis of data shows that some Ni2+ ions (forx>0.56) are located in tetrahedral sites. The percentage of nickel in A-sites increases with nickel content (x) following the relation % Ni2+ in A sites =P = – 82.1x 2+192.4x–81.5 and thus the general formula for cation distribution is
  相似文献   

11.
12.
The formation mechanism of spinels on Al2O3 particles in the Al2O3/Al–1.0 mass% Mg2Si alloy composite material has been investigated by transmission electron microscopy (TEM) in order to determine the crystallographic orientation relationship. A thin sample of the Al2O3/Al–Mg–Si alloy composite material was obtained by the FIB method, and the orientation relationship between Al2O3 and MgAl2O4, which was formed on the surface of Al2O3 particles, was discovered by the TEM technique as follows:
At the interface between the Al2O3 and the matrix the MgAl2O4 (spinel) crystals had facets of {111} planes. Spinels were not grown as thin films, but as particles consisting of {111} planes. They grow towards both the matrix and the Al2O3 particles.  相似文献   

13.
The present work reports isothermal changes of oxygen non-stoichiometry for the perovskite-type electrode material (La0.8Sr0.2)MnO3 in the temperature range 945–1255 K. A thermogravimetric method was used to monitor the rate of the gas/solid equilibration. For equilibration degrees larger than 0.5, the equilibration kinetic data can be described by a diffusion equation. The determined chemical diffusion coefficient depends essentially on the oxygen partial pressure. Its temperature dependence can be expressed by the following expressions at low and high p(O2), respectively:
Dchem = (1.9 ±1.6)10 - 3 \textexp\frac\text - ( \text83\text.4 ±\text15\text.8 )\textkJ mol\text - 1 RT(\textcm\text2 \texts\text - 1 )\text (1)D_{chem} = (1.9 \pm 1.6)10^{ - 3} {\text{exp}}\frac{{{\text{ - }}\left( {{\text{83}}{\text{.4}} \pm {\text{15}}{\text{.8}}} \right){\text{kJ mol}}^{{\text{ - 1}}} }}{{RT}}({\text{cm}}^{\text{2}} {\text{s}}^{{\text{ - 1}}} ){\text{ (1)}}  相似文献   

14.
The elastic-plastic fracture behavior of aluminum alloy Ly12 under mixed I+II mode loading was studied by finite element method and fracture test. A mixed mode elastic-plastic fracture criterion of J-integral was proposed by using the J-resistance curve, and the maximum fracture effective plastic strain p max of different mixed ratios at crack tip were also calculated. The results show that(1) the initiation J-integral values of different mixed ratios have the equation
where J Ii and J IIi are the mode I and mode II components of the mixed initiation J-integral J MC at a constant ixed ratio, respectively;(2) the relation between the J MC and mixed ratio K I/K II is
= J IC /J IIC ;(3) J MC increases with an increasing of mode II component, J IIC is twice of J IC for Ly12; and(4) the maximum fracture effective plastic strain p max and stress triaxiality m / of different mixed ratios at crack tip satisfy the formula of
where the constant is about 9.52 for Ly12. The relation with double parameters, p max and m/, can be used as the local fracture or damage mechanics parameter under mixed mode I+II loading.  相似文献   

15.
A two-layered self healing coating with a B4C internal layer and a SiC external layer is prepared on C/SiC composite by chemical vapor deposition (CVD). Microstructure and component of the coating was analyzed by SEM, EDS, and XRD. Oxidation behavior of SiC-B4C coated C/SiC composite was compared with SiC-SiC coated C/SiC in an environment of at 700°C, 1,000°C and 1,200°C for 100 h, respectively. It is demonstrated that the SiC-B4C coating is more efficient to protect the composite from oxidation than SiC-SiC coating below 1,000°C due to the self healing behavior. After oxidized at 700°C for 100 h, the residual flexural strength of SiC-B4C coated C/SiC is about 86%, and that of SiC-SiC coated is about 64%. While after oxidized at 1,200°C, the former is about 86% and the later is about 89%. This is due to the enhanced evaporation of B2O3 at higher temperature.  相似文献   

16.
Six samples of the system Cd1–x Co x Fe2O4 were prepared by the tartarate precursor method with x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. The formation of ferrispinels were studied by X-ray powder diffraction, infrared spectroscopy, electrical conductivity, thermoelectric power, magnetic hysteresis, initial magnetic susceptibility and Mössbauer spectroscopy. The data of the temperature variation of the direct current electrical conductivity showed a definite kink (390°C) except x = 0.0 and 0.2, which corresponds to the ferrimagnetic to paramagnetic transitions. Magnetic properties of the samples with x 0.6 showed definite hysteresis loops. The observed low magnetic moment can be explained in terms of the non collinear spin arrangement. A well defined hyperfine Zeeman spectra are observed for samples with x 0.6 at room temperature and resolved into two sextets corresponding to octahedral and tetrahedral sites. The electrical, magnetic and Mössbauer properties suggest that, a canted spin arrangement upto x = 0.8 and Néel's configuration above this composition. The probable ionic configuration for the system is suggested as
  相似文献   

17.
Diffusivity of sodium in molten tin was determined using an electrochemical cell of the type Na/Na-β″-Al2O3/(Na)Sn where Na-β″-Al2O3, which is a sodium-ion conductor, was the solid electrolyte. Using the above cell in which a small amount of sodium dissolved in tin was transported through β″-Al2O3 upon application of an external voltage, and using a known solution to Fick's second law for appropriate boundary conditions, the diffusivity was determined to be $$D{\text{ = 4}}{\text{.4 }}\left( {\begin{array}{*{20}c} {{\text{ + 1}}{\text{.0}}} \\ {{\text{ - 0}}{\text{.5}}} \\ \end{array} } \right){\text{ x 10}}^{{\text{ - 4}}} {\text{ exp }}\left( {{\text{ - }}\frac{Q}{{RT}}} \right){\text{ cm}}^{\text{2}} {\text{ sec}}^{{\text{ - 1}}} $$ withQ = 16320 J mol?1 over a range of temperatures from 240 to 440° C. From the solution to Fick's second law, it was shown that first term approximations, which have often been used in the past, lead to an estimate of diffusivity which is about a factor of 2 too high indicating that more terms should be considered. The diffusivity was also determined using a transient technique in which the decay in voltage upon removal of externally applied voltage was recorded as a function of time. The diffusivity so determined, in which it was assumed that the only polarization was the concentration polarization, was higher than the previous method. The difference between the two diffusivities became smaller with increasing temperature. These experiments thus suggested that interfacial or activation polarization must also be present.  相似文献   

18.
The objective of this work was to characterize the interfacial reaction zone in the metal matrix composite system-Al2O3(FP)/Mg (ZE41A). The composite was fabricated by liquid infiltration method. The reaction zone, a result of the reaction between magnesium in the alloy and the alumina fibres, was analysed for its morphology, chemistry, and crystallographic orientation using transmission electron microscopy. The results of this study showed the reaction zone to be, on average, 100nm wide and composed of MgO. The grains of the reaction zone ranged from less than 10 nm at the fibre/reaction zone interface to greater than 100nm at the matrix/reaction zone interface. It is proposed that the growth of the reaction zone was controlled by a seepage mechanism involving infiltration of liquid magnesium between MgO crystalS. Finally, it was observed that the MgO grains have the following crystallographic orientation relationship with the alumina grains from which they grew:
  相似文献   

19.
Cyanide-bridged Fe-Co complex [Fe(Tp)(CN)3]2Co(bpe)?5H2O (1?5H2O; Tp = hydro-tris(pyrazolyl)borate; bpe = 1,2-bis(4-pyridyl)ethane) shows temperature- and light- induced metal-to-metal charge transfer (MMCT) involving spin state changes between magnetic $\mathrm{Fe}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{II}}_{\phantom{\mathrm{II}}\mathrm{HS}}$ (HS = high spin, LS = low spin) state and nonmagnetic $\mathrm{Fe}^{\mathrm{II}}_{\phantom{\mathrm{II}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}$ state, while the dehydrated material 1 does not show any MMCT and holds $\mathrm{Fe}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{II}}_{\phantom{\mathrm{II}}\mathrm{HS}}$ state. We have investigated the magnetic properties of each spin state in 1 and 1?5H2O by means of magnetization and ESR measurement under pulsed high magnetic field. At low temperature below T N, in both 1 and 1?5H2O, the saturation magnetization in the induced ferromagnetic phase is well explained by S and g values derived from the magnetic susceptibility study. In the ESR of 1, we observed characteristic modes corresponding to a spin excitation in the induced ferromagnetic phase where its temperature dependence shows an evolution of spin correlation in the $\mathrm{Fe}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{II}}_{\phantom{\mathrm{II}}\mathrm{HS}}$ state at low temperature. We further found that the similar ESR modes grow in the light-induced state of 1?5H2O. The results strongly suggest that the light-induced magnetization in 1?5H2O is driven by a light-induced MMCT, which involves transition of spin multiplicity from the nonmagnetic $\mathrm{Fe}^{\mathrm{II}}_{\phantom{\mathrm{II}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}$ to the magnetic $\mathrm{Fe}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{II}}_{\phantom{\mathrm{\mathrm{II}}}\mathrm{HS}}$ pair.  相似文献   

20.
The defect structure of acceptor (Al or Cr)-doped polycrystalline calcium titanate was investigated by measuring the oxygen partial pressure dependence (at 10° to 10–18 atm) of the electrical conductivity at 1000 and 1050° C. The observed electrical conductivity data were proportional to for the oxygen pressure range < 10–10 atm and proportional to for the oxygen pressure range ( 10–7 atm. The conductivity values were observed to increase with the acceptor concentration in the p-type region with the shift in the conductivity minima towards lower oxygen partial pressure. The absolute value of the electrical conductivity in the acceptor-doped samples were lower in the n-type region compared to the values in the undoped CaTiO3. Aluminium and chromium were found to be equally effective in acting as acceptor impurities in CaTiO3. The defect chemistry of CaTiO3 is dominated by the added acceptor impurities for the entire oxygen partial pressure range used in this investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号