首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
以LiNi1/3Co1/3Mn1/3O2为正极材料,采用共沉淀合成方法制备LaF3表面修饰LiNi1/3Co1/3Mn1/3O2正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明:经过LaF3表面修饰的LiNi1/3Co1/3Mn1/3O2材料保持了LiNi1/3Co1/3Mn1/3O2层状结构,其中LaF3表面修饰量为0.59%时,在电压为2.75~4.50V范围内,以0.3mA/cm2电流密度下经恒电流充放电测试,其首次放电比容量为172.7mAh/g,经过50周充放电循环后放电比容量为163.5mAh/g,表现出较高的初始放电比容量和良好的抗过充电性能。  相似文献   

2.
以Li2CO3、Ni CO32Ni OH24H2O、Co CO3H2O和Mn CO3为原料,采用高温固相法,制备了Li1.1Ni1/3Co1/3Mn1/3O2正极材料.通过X射线衍射仪(XRD)和扫描电子显微镜(SEM)对材料的结构和形貌进行了表征,并采用恒电流充放电测试系统对该材料的电化学性能进行测试.结果表明:第2次球磨时加锂盐合成的Li1.1Ni1/3Co1/3Mn1/3O2样品结构完整,为-Na Fe O2型二维层状结构,属于R-3m空间群,且该样品的阳离子混排程度较低,颗粒大小比较均匀.该样品在0.1 C放电倍率和2.4~4.6 V电压范围的首次放电比容量为182.7 m Ah/g,循环57次后,容量的仍高达保持率为95.1%,表现出良好的循环性能.  相似文献   

3.
以LiOH·H2O、MnSO4·H2O和NiSO4·6H2O等为原料,采用水热法合成尖晶石LiNi0.5Mn1.5O4材料.利用扫描电子显微镜、粉末X-射线衍射仪、电化学测试分别对材料形貌、结构和电化学性能进行表征.研究加入不同锂量和热处理对尖晶石LiNi0.5Mn1.5O4材料的初始容量、放电平台以及循环性能的影响.结果表明:经过850℃热处理所合成的材料分布均匀、结晶和电化学性能良好.当LiOH溶液为0.162 g·mL-1时,尖晶石LiNi0.5Mn1.5O4材料在1 C倍率电流(140 mAh g-1)条件下,首次放电比容量为111.0 mAh·g-1.且该样品的循环性能优越:经150充放电循环后的容量衰减率仅为4.5%.  相似文献   

4.
采用溶胶-凝胶法合成钠离子电池正极材料Na(Fe1/3Ni1/3Mn1/3)O2,通过扫描电镜、充放电测试等方法,对Na(Fe1/3Ni1/3Mn1/3)O2材料的表面形貌以及电化学性能进行研究,并探索络合剂柠檬酸用量对材料电化学性能的影响.结果表明:当柠檬酸与该材料中过渡金属总摩尔比为1∶1时,合成的Na(Fe1/3Ni1/3Mn1/3)O2材料晶粒分散均匀,粒径均一,颗粒大小约为0.5μm.电化学性能测试表明该产物具有高的放电比容量、优良的循环性能和倍率性能.在10 m A/g的电流密度下首次放电比容量为132.2 m Ah/g,25次循环之后容量仍能达到112.2 m Ah/g,容量保持率达到84.9%.在1 C的放电倍率下,其放电比容量仍能达到84.1 m Ah/g.  相似文献   

5.
采用共沉淀法和成LiNi0.8Co0.2O2,探讨影响锂离子电池正极材料LiNi0.8Co0.2O2电化学性能及结构的因素.为了提高材料的电化学性能,对材料进行了掺杂改性的研究,分别掺入Al、Mn、Mg和Fe四种元素.通过在2.8~4.2V范围内的充放电测试分析,掺入Mn的正极材料LiNi0.8Co0.1Mn0.1O2具有最高的放电比容量以及最低的容量损失,其首次放电容量为168.84 mAh/g,十次循环后的放电容量为166.9 mAh/g.  相似文献   

6.
为解决高温烧结制备的锂离子电池负极材料Li4Ti5O12易团聚、形貌差的问题,采用水热低温烧结法,以钛酸丁酯、氢氧化锂分别为钛源和锂源,异丙醇为溶剂,制备纯相Li4Ti5O12。用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和比表面测试仪对样品进行表征,采用恒流充放电法对钛酸锂进行电化学性能评价。结果表明,在400℃低温煅烧后可得到单一纯相尖晶石型Li4Ti5O12,所制备样品为具有大比表面积的纳米絮状粉体,表现出良好的电化学性能,在常温条件下,以0.1C倍率进行充放电,首次放电容量达到155.7mA·h/g,经50次循环后容量仍保持约143mA·h/g,容量保持率达到91.8%。  相似文献   

7.
通过化学共沉淀法制备SnSb纳米合金,并以此为主体材料表面包覆石墨烯的核壳结构复合材料SbSn/rGO用作钠离子电池负极材料。通过XRD、SEM、EDS测试分析材料的物相结构与形貌,通过循环伏安、恒流充放电测试分析材料的电化学性能。研究表明,SbSn/rGO复合材料缓解了SnSb纳米合金团聚和体积膨胀效应,增强了材料的循环稳定性和倍率性能。SbSn/rGO复合材料150 mA·g~(-1)电流密度及0~3 V充放电电压测试,首次充放电容量为650、700 mA·h·g~(-1),第50次循环的放电比容量保持在350 mA·h·g~(-1),大幅度提高钠电负极材料比容量和循环稳定性。  相似文献   

8.
以LiNi1/3CO1/3Mn1/302为正极材料,采用共沉淀合成方法制备LaF3表面修饰LiNimCo1/3Mnm02正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明:经过LaF3表面修饰的LiNi1/3C01/3Mn1/302材料保持了LiNi1/3Co1/3Mn1/302层状结构,其中LaFs表面修饰量为0.59%时,在电压为2.75-4.50V范围内,以0.3mA/cm。电流密度下经恒电流充放电测试,其首次放电比容量为172.7mAh/g,经过50周充放电循环后放电比容量为163.5mAh/g,表现出较高的初始放电比容量和良好的抗过充电性能。  相似文献   

9.
为研究聚吡咯(PPy)含量对Fe_2O_3/PPy负极材料电化学性能的影响,以FeCl_2·4H_2O为Fe源,采用水热法合成Fe_2O_3纳米片,用原位聚合法合成不同PPy含量的Fe_2O_3/PPy复合材料,并通过X-射线衍射和扫描电子显微镜对合成的材料进行表征;将材料组装成扣式电池,采用恒流充放电、循环伏安法和交流阻抗测试进行电化学性能表征.结果表明:PPy的加入改善了Fe_2O_3的循环稳定性,其中PPy质量分数为5.0%的Fe_2O_3/5.0%PPy负极材料的循环性能最好,在200 mA/g的电流密度下,首次放电比容量为1 342.3 mA·h/g,首次库仑效率达到75.1%;经过100次循环,其放电比容量保持为487.4 mA·h/g,高于Fe_2O_3/2.5%PPy、Fe_2O_3/7.5%PPy和Fe_2O_3的放电比容量.  相似文献   

10.
采用共沉淀法制得的不同陈化时间前驱体均由α-Ni(OH)2和β-Ni(OH)2两相混合组成.随着前驱体中α-Ni(OH)2相对含量增大,对应烧结产物LiNi0.8Co0.1Mn0.1O2的峰强比I(003)/I(104)越大,层状结构越完整,阳离子混排度越小,说明α-Ni(OH)2相的存在可以抑制阳离子混排.陈化12 h前驱体制得的LiNi0.8Co0.1Mn0.1O2峰强比I(003)/I(104)=1.27,其首次放电容量121.9 mA·h/g,30次循环后放电容量113.1 mA·h/g,容量保持率92.8%,其质量比容量大,循环性能好.  相似文献   

11.
以Mn3O4为锰源,采用固相反应法,在较低的温度(650℃)制得尖晶石LiMn2O4正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、循环伏安和恒流充放电等技术对其相组成、微结构和电化学性能进行表征。结果表明该正极材料结晶良好,一次粒径约为150 nm。它的电化学性能,尤其是循环性能,明显优越于在较高温度合成的LiMn2O4。在电流密度为74 mA?g-1时,测得比容量为128 mAh?g-1,在1 480 mA?g-1时,比容量为105 mAh?g-1;在室温、148 mA?g-1充放电200次循环后,容量保持率为93%。  相似文献   

12.
选用锰酸锂(Li Mn2O4)、复合镍钴锰酸锂(Li Ni1/3Co1/3Mn1/3O2)按不同比例混合作为正极,软碳作为负极材料,制备复合镍钴锰酸锂与锰酸锂混合型锂离子全电池(简称混合型锂离子全电池),选择质量分数为15%,35%的Li Mn2O4与Li Ni1/3Co1/3Mn1/3O2混合作为正极活性物质进行实验,研究Li Mn2O4对锂离子全电池充放电性能、安全性能、倍率放电性能、脉冲功率特性等的影响。结果表明:Li Mn2O4质量分数为35%时,既提升了锂离子全电池的电性能,又保证了其较高的安全性能;常温下电流为1I1(I1代表1 h率放电电流)充放电循环预计寿命可达到1 500周,55℃高温下电流为0.5I1充放电循环335周容量保持在92%以上;在放电深度(DOD)10%~80%内10 s脉冲充放电状态下,混合型锂离子全电池阻抗均在9 mΩ以下,50%DOD时的10 s放电比功率在700 W/kg以上。  相似文献   

13.
采用共沉淀法对LiNi0.8Co0.2O2进行Mn元素的掺杂改性,考察不同掺杂量对LiNi0.8Co0.2O2材料的结构和电化学性能的影响,并对LiNi0.8-xMnxCo0.2O2(0≤x≤3)进行X射线衍射和扫描电镜分析以及循环伏安测试。充放电测试结果显示:未掺杂Mn的LiNi0.8Co0.2O2材料的初始放电比容量为164.32 mAh/g,50次循环以后为161.86 mAh/g。经掺Mn后LiNi0.8Co0.2O2材料的初始放电比容量为163.13 mAh/g,并且50次循环以后还能保持在162.33 mAh/g左右,效率达到99%以上。研究表明,掺Mn后的LiNi0.8Co0.2O2材料具有更加稳定的层状结构,并且其循环性能得到很大程度的提高。  相似文献   

14.
本文以Li2CO3 、MnO2为原料,采用微波热处理合成锂离子电池正极材料LiMn2O4,研究了热处理温度,Li/Mn摩尔比对产物结构和电化学性能的影响,同时研究了微波热处理和传统热处理两种加热方式的差别.通过X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试分别对产物的结构、形貌及电化学性能进行表征,结果表明:采用微波法在750℃保温15 min,快速地制备出尖晶石型LiMn2O4,纯度高,尺寸分布均匀,约100-300 nm;于0.1C倍率下,以微波法制备的正极材料首次放电比容量可达112.38 mA·h/g,1C倍率充放电50次循环后,容量保持率为91.6%;以传统方法制备的正极材料0.1C倍率下首次放电比容量为94.07 mA·h/g,1C倍率充放电50次循环后,容量保持率为71.4%  相似文献   

15.
采用共沉淀法合成掺杂的Li_(1/3)Ni_(1/3)Co_(1/3)Mn_(1/3-x)Sn_xO_2的正极材料,通过X射线光谱、扫描电镜、充放电测试等技术对Li_(1/3)Ni_(1/3)Co_(1/3)Mn_(1/3-x)SnxO_2材料的结构、形貌、电化学性能进行表征。结果表明,采用共沉淀法Sn4+能有效掺杂进正极材料Li_(1/3)Ni_(1/3)Co_(1/3)Mn_(1/3)O_2的体相结构。掺杂量x=0.04时,在2.8~4.2V、0.2C倍率下掺杂的正极材料首次充放电比容量为138.5mA·h/g,30次循环后的容量保持率为96.96%。掺杂Sn4+对Li_(1/3)Ni_(1/3)Co_(1/3) Mn_(1/3)O_2正极材料改性后,材料仍保持典型的α-NaFeO_2层状结构,且晶型良好,表明Sn4+掺杂能够有效改善材料的电化学性能。  相似文献   

16.
评述了锂离子电池正极材料层状LiNi1/3Co1/3Mn1/3O2的最新研究进展,阐述其结构特征和存在的优缺点,介绍LiNi1/3Co1/3Mn1/3O2正极材料的制备方法,以及离子掺杂和包覆改性对该正极材料性能的影响,展望其发展方向.  相似文献   

17.
锂离子电池硅/石墨/碳负极材料性能   总被引:1,自引:1,他引:0  
为提高锂离子电池硅基材料的循环性能,用高温固相热解法合成硅/石墨/碳复合材料.采用XRD、循环伏安和充放电技术表征其结构和电化学性能.考察不同的粘结剂体系和极片热处理对材料电化学循环性能的影响.结果表明:采用水性粘结剂可以提高材料的电化学性能;对极片进行热处理也可以很好地提高电极的循环稳定性.首次脱锂比容量为970.5 mAh/g,40次循环后,脱锂比容量仍高达822.1 mAh/g.  相似文献   

18.
采用镍锰氢氧化物和碳酸锂为原料,在高温下合成LiNi0.5Mn1.5O4正极材料。系统地研究了不同的退火工艺对LiNi0.5Mn1.5O4结构与电化学性能的影响。研究发现,合成的样品都具有标准的尖晶石结构和规则的八面体外形。电化学测试结果表明,在700℃下退火12h得到的样品电化学性能最佳。首次放电容量达到141mAh/g,40次循环后容量保持率为99.2%,5C放电时容量仍然达到122mAh/g。  相似文献   

19.
以氢氧化铝溶胶为前驱体在LiNi0.5 Mn1.5 O4正极材料表面制备尖晶石结构γ-Al2 O3包覆层,借助XRD、SEM、TEM及电化学方法对电极材料的主要性能进行了研究。结果表明:LiNi0.5 Mn1.5 O4表面γ-Al2 O3包覆层形成条件为600℃下煅烧0.5 h,较佳包覆量约为3%(摩尔比);γ-Al2 O3包覆层形貌完整,厚度约为5~10 nm,(311)晶面间距约0.24 nm;γ-Al2O3包覆的LiNi0.5Mn1.5O4正极材料30周充放电循环(0.2 C)后的比容量为112.1 mAh/g,4 C倍率下的比容量为82.0 mAh/g,容量保持率较基体分别提高了约10%和17.2%。因此,γ-Al2 O3包覆层减小了LiNi0.5 Mn1.5 O4与电解液的接触,有效抑制了基体与电解液之间的副反应,其电化学反应可逆性、循环稳定性及倍率性能得到了提高,有望用作动力锂离子电池正极材料。  相似文献   

20.
以Li2CO3和TiO2为原料,以乙醇为分散剂,采用高温固相方法合成Li4Ti5O12锂离子电池负极材料,利用XRD、SEM和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行了表征。系统考察了热处理温度对Li4Ti5O12负极材料结构及电化学性能的影响,同时也研究了锂的投料量对Li4Ti5O12电化学性能的影响。在1.0~2.2 V(vs.Li/Li+)范围内,以0.1 mA/cm2的电流密度对最佳工艺条件下合成的Li4Ti5O12负极材料进行了恒电流充放电测试。其首次放电比容量为167 mAh/g,经过30周充放电循环后放电比容量几乎没有衰减,表现出较大的初始放电比容量和良好的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号