首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用透射电镜观察了30CrMnSiNi2A钢等温的微观组织,疲劳裂纹扩展行为、裂纹尖端塑性区和位错结构,结果表明,等温状态组织由马氏体和贝氏体组成。在一个奥氏体晶粒内一般存在四个板条领域、裂纹尖端的塑性区内存在主位错带,疲劳断裂的基本组织单元为板条晶或板条束。裂纹遇到板条束界时方向发生较大偏斜。  相似文献   

2.
A medium-carbon steel was treated by the bainitic isothermal transformation plus quenching and partitioning (B-QP) process to obtain bainite/martensite/retained austenite multiphase microstructure, and its fatigue crack propagation (FCP) behavior was evaluated in contrast with BAT (bainite austempering) sample with fully bainite microstructure. Results show that B-QP sample exhibits a lower FCP rate and higher fatigue threshold ΔKth (12.6 MPa·m1/2). Moreover, the FCP path of B-QP sample displays a strongly tortuosity and more crack branching due to more filmy retained austenite (7.2%) and higher percentage of high angle misoriented boundaries (68%). The larger crack tortuosity and the secondary cracks as result of crack branching are primarily responsible for the lower FCP rate of B-QP sample. In addition, the FCP rate curve of B-QP sample shows a pronounced small plateauing at the near-threshold zone, which can be ascribed to the mechanical twinning that occurred in the filmy retained austenite.  相似文献   

3.
It has been shown by means of EBSD techique that fracture of ferritic steel in ductile-brittle transition temperature region, along with the formation of previously discribed cleavage microcracks, results in the formation of ductile microcracks. It has also been shown that microstructure of plastic zones under brittle and ductile fracture components produced by the main crack propagation differ significantly. Better developed plastic zone under ductile fracture component protects steel from overstress. The plastic zone under brittle fracture surface, apparently, has a reduced local plasticity. Consequently, the cleavage microcracks formation precedes the fracture process. During the main crack formation such microcracks occur in steel microvolumes located both in front of its tip and in adjacent to its edges microvolumes. Further propagation of the main crack is realized in steel which already contains scattered cavities and reduces to ductile fracture of the connections between them.  相似文献   

4.
5.
Abstract

Recent year's equipment design has enabled the combination of in situ deformation tests with near real time electron backscatter diffraction (EBSD) mapping of the microstructure evolution in the scanning electron microscope (SEM). The present work involves studies of deformation induced phase transformations in supermartensitic steel containing ~40 vol.-% retained austenite at room temperature. The martensite formation was initiated already at low strains, and increased gradually with increasing plastic strains up to ~10%. It was observed that the martensite formed homogeneously within the microstructure, independent of the crystallographic orientations of the retained austenite. But no new martensite variants, besides those already present in the as received condition, did form during deformation. At the same time, the mutual distribution of these variants remained approximately constant throughout the deformation process.  相似文献   

6.
In the as-quenched state, 13%Cr-4%Ni martensitic stainless steels are essentially 100% martensitic. However, a certain amount of austenite is formed during the tempering of this alloy. This reformed austenite is thermally stable at room temperature but can transform to martensite under stress. This transformation is known to happen during impact testing but it has never been established if it occurs during fatigue crack propagation. This study presents the results of X-ray diffraction measurements of reformed austenite before and after crack growth testing. It has been found that reformed austenite does transform to martensite at the crack tip and that this transformation occurs even at a low stress intensity factor. Low-cycle fatigue tests were conducted to verify austenite transformation under cyclic straining. It was found that reformed austenite transforms only partially during the first strain reversal but that essentially all austenite has disappeared after 100 cycles. The relation between austenite transformation under low-cycle fatigue and its transformation during crack growth is also discussed.  相似文献   

7.
针对国内某钢厂最新研制的Q890高强钢,采用三种不同的热输入对其进行气体保护焊接,研究了不同热输入对焊缝金属组织、硬度及冲击韧性的影响.结果表明,3种热输入下,焊缝组织主要以板条贝氏体为主,并含有粒状贝氏体、少量的板条马氏体和残余奥氏体.随着热输入的增大,焊缝组织中贝氏体铁素体板条粗化,板条马氏体逐渐减少,而粒状贝氏体逐渐增多,部分残余奥氏体由薄膜状向块状转变;焊缝金属硬度随着热输入的增大而下降;焊缝金属的冲击韧性亦呈逐渐下降的趋势.  相似文献   

8.
对690 MPa级海工钢进行“淬火+两相区退火+回火”三步热处理,研究了回火温度对其组织和性能的影响、分析了力学性能变化与组织演变和残余奥氏体体积分数之间的关系。结果表明:回火后实验钢的显微组织为回火贝氏体/马氏体、临界铁素体和残余奥氏体的混合组织。随着回火温度的提高贝氏体/马氏体和临界铁素体逐渐分解成小尺寸晶粒,而残余奥氏体的体积分数逐渐增加;屈服强度由787 MPa降低到716 MPa,塑性和低温韧性明显增强,断后伸长率由20.30%增至29.24%,-40℃下的冲击功由77 J提升至150 J。残余奥氏体体积分数的增加引起裂纹扩展功增大,是低温韧性提高的主要原因。贝氏体/马氏体的分解和残余奥氏体的生成,引起组织细化、晶粒内低KAM值位错的比例逐渐提高和小角度晶界峰值的频率增大,使材料的塑性和韧性显著提高。  相似文献   

9.
The present paper reviews experimental results on the fatigue damage of austenitic–ferritic duplex steel under various load levels ranging from LCF to VHCF, placing the focus towards the relationship between the crystallographic orientation of individual grains and grain patches that exhibit slip band formation, fatigue crack initiation and growth. A combination between fatigue testing of electropolished specimens and analytical electron microscopy (SEM/EBSD, TEM) revealed that under LCF loading conditions almost all the ferrite and the austenite grains showed plasticity, while under HCF and VHCF loading conditions, slip band formation was limited to the softer austenite grains and a low plastic activity is observed in the ferrite. Once being formed, the bands generate high stress concentrations, where they impinge the α–γ phase boundaries, eventually, leading to the crack initiation. This is discussed by applying a numerical simulation approach based on the finite-element (FEM) and the boundary-element (BEM) method.  相似文献   

10.
Abstract Fatigue crack growth under constant and random loading conditions was investigated for a metastable austenitic-bainitic steel in comparison with a ferritic chromium steel at very low crack growth rates. Experimentally determined random crack growth was compared with linear Miner calculations on the basis of constant amplitude results. It was found that the measured crack growth rates in transforming material are a factor of 10 lower than the calculated values, whereas the difference is only a factor of 2 for the ferritic steel. The reason for the pronounced crack growth retardation in the metastable alloy is transformation of part of the austenitic phase into martensite in the stress field of the crack tip, accompanied by a volume increase and, consequently, residual compressive stresses. Rare high load cycles in the random sequence increase the closure level, which then leads to pronounced retardation of fatigue crack growth for the numerous successive low amplitude cycles.  相似文献   

11.
Fracture Mechanical Properties of Metastable Austenites The effect of a martensitic tranformation at the crack tip on fracture mechanical properties was investigated with FeNiAl-model alloys. Transformable austenite and martensite obtained by deep-cooling showed a completely different behaviour. The martensite has high yield stress, normal dependence of fracture toughness of specimen diameter, and a low threshold for the start of fatigue crack growth. Characteristic for the metastable austenite is a high work hardening ability (at a low yield stress) by stress-induced martensitic transformation in a zone at the crack tip, which is surrounded by untransformed austenite. This leads to a compressive internal stress, which impedes crack growth. A consequence is a high fracture toughness, which even increases with specimen thickness, and a very high threshold value for fatigue crack growth. Localized stress induced martensitic transformation associated with a positiv volume change can explain the anomalous fracture mechanical properties of the alloys in the metastable austenitic state.  相似文献   

12.
目的 在球墨铸铁基体上电弧增材制造Fe-Cr合金,研究结合区组织和性能,以期获得具有良好冶金结合、满足冲裁模具性能要求的双金属构件。方法 采用GMAW工艺增材制造,用金相显微镜和扫描电子显微镜表征结合区的显微组织,并分析其形成机制。结果 Fe-Cr合金与球墨铸铁结合区无明显裂纹和气孔,其凝固组织为柱状晶和等轴晶,冷却后转变为马氏体和残余奥氏体,但其分布不均匀,在界面处有一富奥氏体层。结合区内球墨铸铁受热影响发生奥氏体化和部分熔化,熔化发生在临近结合界面的石墨球周围,其冷却后形成一层马氏体和一层莱氏体的双层壳型组织结构,未熔化部位的组织为马氏体和铁素体,珠光体球墨铸铁比铁素体球墨铸铁形成的马氏体多。结合区内硬度分布不均匀,球墨铸铁的硬度从基材到结合界面逐渐升高,最高达630HV,Fe-Cr合金平均硬度为510HV。结论 电弧增材制造Fe-Cr合金与球墨铸铁基体冶金结合良好,Fe-Cr合金组织为马氏体和残余奥氏体,有较高的硬度,能满足冲裁模具的性能要求。  相似文献   

13.
Transformation induced plasticity steels are commonly used for automotive industry due to their high strength and high ductility. These steels achieve good balance of strength and ductility due to transformation of retained austenite to martensite during deformation. In this study, effect of retained austenite characteristics on fatigue and tensile property of conventional CMnSi steel is evaluated. Tensile and fatigue test were carried out at room temperature. After mechanical tests, fractography observations were carried out by scanning electron microscopy. All samples show reasonably high values of tensile strength and fatigue limit. Results of fatigue test show that fatigue performance of this steel improved by increasing volume fracture of retained austenite.  相似文献   

14.
Abstract

The texture evolution in hot band and annealed hot bands of low alloyed ferritic stainless steel with about 11 wt-%Cr was experimentally investigated using quantitative texture analysis. While the hot band texture was composed of components of α fibre and in particular δ fibre, its microstructure was a banded structure of mostly relaxed martensite and retained ferrite. Both the texture and microstructure of the hot band was derived from partially recrystallised austenite. During single phase hot band annealing, there was a strong sharpening in the strength of the texture components of δ fibre by strain induced boundary migration of the retained ferrite and formation of fine carbide sheets leading to the persistence of ferrite banding. In contrast, two phase hot band annealing resulted in the formation of a nearly equiaxed duplex ferrite grain structure with an aggregate of precipitated carbides within the transformed ferrite grains and complete elimination of microstructural banding of the hot band, and also led to the occurrence of a texture memory phenomenon.  相似文献   

15.
采用双相区再加热-淬火-碳配分(IQP)工艺,研究初始组织为铁素体+珠光体的IQP-Ⅰ多相钢和初始组织为马氏体的IQP-Ⅱ多相钢的组织形貌、残留奥氏体及力学性能。结果表明:初始组织为铁素体+珠光体的IQP-Ⅰ多相钢室温组织中,铁素体和马氏体基本呈块状分布,块状残留奥氏体存在于铁素体与马氏体界面处,薄膜状只存在于马氏体内的板条之间,且残留奥氏体含量较少,TRIP效应不明显,其抗拉强度为957 MPa,伸长率只有20%,强塑积为19905.6MPa·%。初始组织为马氏体的IQP-Ⅱ多相钢中铁素体和马氏体大多呈灰黑色的板条状或针状,且细小的针状马氏体均匀地分布在铁素体基体上,残留奥氏体只以薄膜状平行分布在铁素体基体上,体积分数达到了13.2%,且具有较高的稳定性,TRIP效应较明显,强塑积达到21560MPa·%,可以获得强度和塑性的良好结合。  相似文献   

16.
Damage evolution during low- and high-cycle fatigue in an embrittled duplex stainless steel is characterized in this paper. Moreover, scanning electron microscopy observations (SEM) in combination with electron backscattered diffraction (EBSD) measurements and transmission electron microscopy (TEM) were employed in order to analyze microcracks formation and propagation. During low-cycle fatigue, microcracks initiate the ferrite phase either along slip planes with the highest Schmid factor (SF) inside the grains or at the α/α grain boundary. Then, microcracks propagation take place in ferrite or austenite grains with the highest SF. An analysis of the dislocation structure in the near-surface and in ferritic grains in the bulk of the specimen has shown that dislocation microbands are associated with microcrack initiation.In the high-cycle fatigue regime, damage generally initiates in the austenite by slip band formation followed by crack initiation either at an αα boundary or at an αγ boundary in the intersection of slip bands in the austenite. The microstructure in the austenite consists of a low density of dislocation pile-ups while the ferrite is practically inactive or develops only micro-yielding at boundaries.Despite the differences in both fatigue regimes, phase boundaries are an effective barrier against crack propagation because they delay the advance of the crack tip.  相似文献   

17.
In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding parameters are 300 rpm rotational speed,60 mm/min welding speed and10 kn axial force.In stir zone(SZ),austenite dynamic recrystallization induced by plastic deformation and the high cooling rates lead to an obvious refinement of prior austenite grains and martensite laths.The microstructure in SZ contains lath martensite with high dislocation density,a lot of nano-sized MX and M_3C phase particles,but almost no M_(23)C_6 precipitates.In thermal mechanically affect zone(TMAZ)and heat affect zone(HAZ),refinement of prior austenite and martensitic laths and partial dissolution of M_(23)C_6 precipitates are obtained at relatively low rotational speed.However,with the increase of heat input,coarsening of martensitic laths,prior austenite grains,and complete dissolution of M_(23)C_6 precipitates are achieved.Impact toughness of SZ at-20?C is slightly lower than that of base material(BM),and exhibits a decreasing trend with the increase of rotational speed.  相似文献   

18.
The microstructure of the laser melted 1.0%C tool steel have been investigated.The region affectedby the laser can be subdivided into 3 zones,which consist of a melted region at the surface,a zonewith solid state transformation and the area adjacent to the unaffected substrate where cementite isslightly dissolved.The melted zone possessed a cellular growth morphology consisting of austeniteand martensite.The carbon content of the austenite was measured to be over 1 wt-%.A great deal ofretained austenite and twinned martensite were found in the first two zones(the melted and solidtransformed).  相似文献   

19.
The effect of microstructure on the fatigue properties of Ti–6Al–2.5Mo–1.5Cr alloy was investigated. The experimental results for both the fatigue crack initiation and propagation behaviour, as well as the dynamic fracture toughness ( K Id ) showed clearly that a lamellar microstructure is superior to two other structures. It was found that, as in the case of steels, the initiation and subsequent growth of cracks in the titanium specimens with a sharp notch may also occur on loading levels below the threshold values of the K factor (Δ K th ) determined for long fatigue cracks. In addition, measurements by interferential-contrast of the plastic zone size on the surface of specimens revealed that the different rate of crack growth at identical values of Δ K in individual structural states can roughly be correlated with the size of the plastic zone. A general relationship between the fatigue crack growth rate and plastic zone size, the modulus of elasticity and the role of crack tip shielding is discussed.  相似文献   

20.
Two-dimensional modeling to compute plastic zone in front of a crack in a compact tension specimen of a multiphase material was published previously. This paper is the continuation of it, using the same concept, but in three dimensions. The heart of this study is to develop a simulation method to predict the effect of microstructural morphology in multiphase steel in three dimensions utilizing commercial software.The object of the model, multiphase of ferrite and martensite, is known to benefit its fatigue performance by its high toughness yet maintains the high tensile properties due to controlled microstructure. Multiphase steel having a microstructure consisting of polygonal ferrite and martensite has received a great deal of attention due to their useful combination of high strength, high work hardening rate, and ductility. From the fracture mechanics point of view, the key to its fatigue performance is the large plastic zone size in front of the crack. In this research, a sub-modeling technique is used, by using three-dimensional modeling of cube with variation of ferrite fraction as local models. The global model, a compact tension specimen, is treated as a homogeneous material. The results show strong correlation and similarity with that of two-dimensional model. The analysis result shows the variation of the plastic zone sizes as the ferrite fraction varies and saturates at about 60% ferrite fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号