首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper numerically and experimentally investigated the liquid cooling efficiency of heat sinks containing micro pin fins. Aluminum prototypes of heat sink with micro pin fin were fabricated to explore the flow and thermal performance. The main geometry parameters included the diameter of micro pin fin and porosity of fin array. The effects of the geometrical parameters and pressure drop on the heat transfer performance of the heat sink were studied. In the experiments, the heat flux from base of heat sink was set as 300 kW/m2. The pressure drop between the inlet and the outlet of heat sink was set < 3000 Pa. Numerical simulations with similar flow and thermal conditions were conducted to estimate the flow patterns, the effective thermal resistance. It was found that the effective thermal resistance would reach an optimum value for various pressure drops. It was also noted that the effective thermal resistance was not sensitive to porosity for sparsely packed pin fins.  相似文献   

2.
《Applied Thermal Engineering》2007,27(14-15):2473-2482
The parallel-plain fin (PPF) array structure is widely applied in convective heat sinks in order to create extended surface for the enhancement of heat transfer. In the present study, for investigating the influences of designing parameters of PPF heat sink with an axial-flow cooling fan on the thermal performance, a systematic experimental design based on the response surface methodology (RSM) is used. The thermal resistance and pressure drop are adopted as the thermal performance characteristics. Various designing parameters, such as height and thickness of fin, width of passage between fins, and distance between the cooling fan and the tip of fins, are explored by experiment. Those parameters affect the structure arrangement, geometry of fins and the status of impinging jet from an axial-flow cooling fan installed over the heat sink. A standard RSM design called a central composite design is selected as experimental plan for the four parameters mentioned above. An effective procedure of response surface methodology (RSM) has been proposed for modeling and optimizing the thermal performance characteristics of PPF heat sink with the design constrains. The most significant influential factors for minimizing thermal resistance and pressure drop have been identified from the analysis of variance. The confirmation experimental results indicate that the proposed model is reasonably accurate and can be used for describing the thermal resistance and pressure drop with the limits of the factors studied. The optimum designing parameters of PPF heat sink with an axial-flow cooling fan under constrains of mass and space limitation, which are based on the quadratic model of RSM and the sequential approximation optimization method, are found to be fin height of 60 mm, fin thickness of 1.07 mm, passage width between fins of 3.32 mm, and distance between the cooling fan and the tip of fins of 2.03 mm.  相似文献   

3.
In this paper, low melting point metal (LMPM), eutectic alloy Bi31.6In48.8Sn19.6 (E-BiInSn), was adopted as phase change material for potential thermal management applications. First, E-BiInSn was prepared and its main thermophysical properties were characterized. Then, transient thermal performances of E-BiInSn based heat sinks with internal crossed fins were tested, in comparison with that of organic PCM (octadecanol) which has close melting point. Three types of heat sink structures which have different number of internal fins were studied. Three heating conditions were applied, namely 80 W (2.2 W/cm2), 200 W (5.6 W/cm2) and 320 W (8.9 W/cm2). For all of the cases, E-BiInSn exhibited much superior thermal performance than that of octadecanol. Furthermore, cyclic test of the E-BiInSn heat sink was carried out, which showed good repeatability and stability, and without supercooling. Finally, a simplified 3D conjugate numerical model was developed to simulate the melting process of LMPM heat sink, which showed good agreement with the experimental results. This simplified model would be much useful in practical thermal design and optimization of LMPM heat sink, for that it would significantly save the computational time consumption.  相似文献   

4.
A full 3-dimensional (3D) conjugate heat transfer model has been developed to simulate the heat transfer performance of silicon-based, parallel microchannel heat sinks. A semi-normalized 3-dimensional heat transfer model has been developed, validated and used to optimize the geometric structure of these types of microheat sinks. Under a constant pumping power of 0.05 W for a water-cooled microheat sink, the optimized geometric parameters of the structure as determined by the model were a pitch of 100 μm, a channel width of 60 μm and a channel depth of about 700 μm. The thermal resistance of this optimized microheat sink was calculated for different pumping powers based on the full 3D conjugate heat transfer model and compared with the initial experimental results obtained by Tuckerman and Pease in 1981. This comparison indicated that for a given pumping poser, the overall cooling capacity could be enhanced by more than 20% using the optimized spacing and channel dimensions. The overall thermal resistance was 0.068 °C/W for a pumping power of 2 W.  相似文献   

5.
A novel miniature porous heat sink system was presented for dissipating high heat fluxes of electronic device, and its operational principle and characteristics were analyzed. The flow and heat transfer of miniature porous heat sink was experimentally investigated at high heat fluxes. It was observed that the heat load of up to 280 W (heat flux of 140 W/cm2) was removed by the heat sink with the coolant pressure drop of about 34 kPa across the heat sink system and the heater junction temperature of 62.9 °C at the coolant flow rate of 6.2 cm3/s. Nu number of heat sink increased with the increase of Re number, and maximum value of 323 for Nu was achieved at highest Re of 518. The overall heat transfer coefficient of heat sink increased with the increase of coolant flow rate and heat load, and the maximal heat transfer coefficient was 36.8 kW(m2 °C)?1 in the experiment. The minimum value of 0.16 °C/W for the whole thermal resistance of heat sink was achieved at flow rate of 6.2 cm3/s, and increasing coolant flow rate and heat fluxes could lead to the decrease in thermal resistance. The micro heat sink has good performance for electronics cooling at high heat fluxes, and it can improve the reliability and lifetime of electronic device.  相似文献   

6.
Experiments were conducted to investigate forced convective cooling performance of a copper microchannel heat sink with Al2O3/water nanofluid as the coolant. The microchannel heat sink fabricated consists of 25 parallel rectangular microchannels of length 50 mm with a cross-sectional area of 283 μm in width by 800 μm in height for each microchannel. Hydraulic and thermal performances of the nanofluid-cooled microchannel heat sink have been assessed from the results obtained for the friction factor, the pumping power, the averaged heat transfer coefficient, the thermal resistance, and the maximum wall temperature, with the Reynolds number ranging from 226 to 1676. Results show that the nanofluid-cooled heat sink outperforms the water-cooled one, having significantly higher average heat transfer coefficient and thereby markedly lower thermal resistance and wall temperature at high pumping power, in particular. Despite the marked increase in dynamic viscosity due to dispersing the alumina nanoparticles in water, the friction factor for the nanofluid-cooled heat sink was found slightly increased only.  相似文献   

7.
In this study, effects of cross-cuts on the thermal performance of heat sinks under the parallel flow condition are experimentally studied. To find effects of the length, position, and number of cross-cuts, heat sinks with one or several cross-cuts ranging from 0.5 mm to 10 mm were fabricated. The pressure drop and the thermal resistance of the heat sinks are obtained in the range of 0.01 W<Pp < 1 W. Experimental results show that among the many cross-cut design parameters, the cross-cut length has the most significant influence on the thermal performance of heat sinks. The results also show that heat sinks with a cross-cut are superior to heat sinks containing several cross-cuts in the thermal performance. Based on experimental results, the friction factor and Nusselt number correlations for heat sinks with a cross-cut are suggested. Using the proposed correlations, thermal performances of cross-cut heat sinks are compared to those of optimized plate-fin and square pin-fin heat sinks under the constant pumping power condition. This comparison yields a contour map that suggests an optimum type of heat sink under the constraint of the fixed pumping power and fixed heat sink volume. The contour map shows that an optimized cross-cut heat sink outperforms optimized plate-fin and square pin-fin heat sinks when 0.04 < log L1 < 1.  相似文献   

8.
With the rapid development of the information technology (IT) industry, the heat flux in integrated circuit (IC) chips cooled by air has almost reached its limit about 100 W/cm2. Some applications in high technologies require heat fluxes well beyond such a limitation. Therefore the search of a more efficient cooling technology becomes one of the bottleneck problems of the further development of IT industry. The microchannel flow geometry offers large surface area of heat transfer and a high convective heat transfer coefficient. However, it has been hard to implement because of its very high pressure head required to pump the coolant fluid though the channels. A normal channel could not give high heat flux although the pressure drop is very small. A minichannel can be used in heat sink with a quite high heat flux and a mild pressure loss. A minichannel heat sink with bottom size of 20 mm × 20 mm is analyzed numerically for the single-phase laminar flow of water as coolant through small hydraulic diameters and a constant heat flux boundary condition is assumed. The effects of channel dimensions, channel wall thickness, bottom thickness and inlet velocity on the pressure drop, thermal resistance and the maximum allowable heat flux are presented. The results indicate that a narrow and deep channel with thin bottom thickness and relatively thin channel wall thickness results in improved heat transfer performance with a relatively high but acceptable pressure drop. A nearly-optimized configuration of heat sink is found which can cool a chip with heat flux of 256 W/cm2 at the pumping power of 0.205 W. The nearly-optimized configuration is verified by an orthogonal design. The simulated thermal resistance agrees quite well with the result of conventional correlations method with the maximum difference of 12%.  相似文献   

9.
This paper experimentally investigates the sintered porous heat sink for the cooling of the high-powered compact microprocessors for server applications. Heat sink cold plate consisted of rectangular channel with sintered porous copper insert of 40% porosity and 1.44 × 10?11 m2 permeability. Forced convection heat transfer and pressure drop through the porous structure were studied at Re ? 408 with water as the coolant medium. In the study, heat fluxes of up to 2.9 MW/m2 were successfully removed at the source with the coolant pressure drop of 34 kPa across the porous sample while maintaining the heater junction temperature below the permissible limit of 100 ± 5 °C for chipsets. The minimum value of 0.48 °C/W for cold plate thermal resistance (Rcp) was achieved at maximum flow rate of 4.2 cm3/s in the experiment. For the designed heat sink, different components of the cold plate thermal resistance (Rcp) from the thermal footprint of source to the coolant were identified and it was found that contact resistance at the interface of source and cold plate makes up 44% of Rcp and proved to be the main component. Convection resistance from heated channel wall with porous insert to coolant accounts for 37% of the Rcp. With forced convection of water at Re = 408 through porous copper media, maximum values of 20 kW/m2 K for heat transfer coefficient and 126 for Nusselt number were recorded. The measured effective thermal conductivity of the water saturated porous copper was as high as 32 W/m K that supported the superior heat augmentation characteristics of the copper–water based sintered porous heat sink. The present investigation helps to classify the sintered porous heat sink as a potential thermal management device for high-end microprocessors.  相似文献   

10.
Previous studies have investigated the thermal performance of embedding a single piezoelectric fan in a heat sink. Based on this work, a multiple piezoelectric–magnetic fan system (“MPMF”) has been successfully developed that exhibits lower fan power consumption, optimum fan pitch and an optimum fan gap between the fan tips and the heat sink. In this study, the cooling performance and heat convection improvement for the MPMF system embedded in a heat sink are evaluated at different fan tip locations. The results indicate that the fan tip location of the MPMF system at x/Sl = 0.5 and y/Sh = 0 is an optimum configuration, improving the thermal resistance by 53.2% over natural convection condition for the fan input power of 0.1 W. The MPMF system breaks the thermal boundary layer and causes fluctuations inside the fins of the heat sink to enhance the overall heat transfer coefficient. Moreover, the relationship between the convection improvement and the Reynolds number for the MPMF system has been investigated and transformed into a correlation line for nine different fan tip locations to provide a means of predicting the cooling performance for the MPMF system embedded in a heat sink.  相似文献   

11.
This paper describes an experimental and a semi-empirical study on the impingement cooling characteristics of heat sinks with longitudinal fins of a type suitable for LSI packages. The experiments were performed with a variety of different fins. To enhance impingement cooling, one long rectangular inlet orifice (slit) over the center of the heat sink was found to offer the best structure. The optimum orifice width is about 1/6 of the base width of the heat sink. The thermal resistance at a fixed volumetric flow rate and orifice width varies little with size of the gap between the fin tops and inlet orifice, but gaps near 2 mm slightly lower the resistance. Correlations are proposed between the thermal resistance of the heat sink and the geometry of the longitudinal fins. The accuracy of the predicted thermal resistances was found to be within ±25% of the experimental data. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 25(8): 537–553, 1996  相似文献   

12.
This work describes an inverse problem method to optimize the geometric design for microchannel heat sinks using a novel multi-parameter optimization approach, which integrates the simplified conjugate-gradient scheme and a fully developing three-dimensional heat transfer and flow model. Overall thermal resistance is the objective function to be minimized with number of channels, N, channel aspect ratio, α, and the ratio of channel width to pitch, β, as search variables. With a constant bottom area (10 mm × 10 mm), constant heat flux applied to the heat sink bottom surface (100 W cm?2), and constant pumping power (0.05 W), the optimal design values are N = 71, α = 8.24, and β = 0.6, with a minimum overall thermal resistance of 0.144 K W?1. Increasing pumping power reduces overall thermal resistance of the optimal design; however, the design’s effectiveness declines significantly under high pumping power. The N and α values in the optimal design increase and β decreases as pumping power increases.  相似文献   

13.
This paper reports the results of an experimental investigation of the performance of finned heat sinks filled with phase change materials for thermal management of portable electronic devices. The phase change material (PCM) used in this study is n-eicosane and is placed inside a heat sink made of aluminium. Aluminium acts as thermal conductivity enhancer (TCE), as the thermal conductivity of the PCM is very low. The heat sink acts as an energy storage and a heat-spreading module. Studies are conducted for heat sinks on which a uniform heat load is applied for the unfinned and finned cases. The test section considered in all cases in the present work is a 80 × 62 mm2 base with TCE height of 25 mm. A 60 × 42 mm2 plate heater with 2 mm thickness is used to mimic the heat generation in electronic chips. Heat sinks with pin fin and plate fin geometries having the same volume fraction of the TCE are used. The effect of different types of fins for different power level (ranging from 2 to 7 W) in enhancing the operating time for different set point temperatures and on the duration of latent heating phase were explored in this study. The results indicate that the operational performance of portable electronic device can be significantly improved by the use of fins in heat sinks filled with PCM.  相似文献   

14.
This work investigates the effects of a shield on the thermal and hydraulic characteristics of plate-fin vapor chamber heat sinks under cross flow cooling. The surface temperature distributions of the vapor chamber heat sinks are measured using infrared thermography. The thermal-fluid performance of vapor chamber heat sinks with a shield is determined by varying the fin width, the fin height, the fin number and the Reynolds number. The experimental data thus obtained are compared with those without a shield.Experimental results indicate that the maximum surface temperature of the vapor chamber heat sink is effectively reduced by adding the shield, which forces more cooling fluid into the inter-fin channel to exchange heat with the heat sink. However, using the shield increases the pressure drop across the heat sink. The experimental data also show that the enhancement of the heat transfer increases with the Reynolds number, but the improvement declines as the Reynolds number increases. When the pumping power and heat transfer are simultaneously considered, vapor chamber heat sinks with thinner, higher or more fins exhibit better thermal-hydraulic performance.  相似文献   

15.
Thermal performance in terms of enhancement ratios and the effect of orientation of a copper porous matrix filled phase change material (PCM) based heat sink are experimentally studied in this paper. N-eicosane is used as the phase change material. A copper open cell metal foam, press fitted into an aluminium casing is the thermal conductivity enhancer. In PCM based heat sinks, low thermal conductivity associated with PCMs makes the use of enhancement techniques inevitable for better thermal performance. A plate heater with an overall dimension of 60 × 42 mm2 with 2 mm thickness is used to mimic the heat generation in electronic chips. The effect of orientation of the heat sink on thermal performance is studied by developing a tracking system, capable of placing the heat sink at any specified orientation.  相似文献   

16.
This work systematically studied the heat transfer characteristics of the porous green building materials. The base materials of these porous green building materials were closed-cell aluminum foams. When the LED lamp is inserted into this porous material, the porous materials may enhance the heat transfer capacity of the heat sink of LED lamp due to their high thermal conductivity. Total four kinds of test heat sinks were employed: (1) Model A—the copper-alloy powder and composite-graphite heat sink with the annular aluminum-alloy conductive base; (2) Model B—the aluminum-alloy powder and composite-graphite heat sink with the annular aluminum-alloy conductive base; (3) Model C—the composite-graphite heat sink with the annular aluminum-alloy conductive base and copper-foam fins; and (4) Model D—the aluminum-alloy heat sink of the Philips LED lamp (Model no.: MASTER LED PAR38 MV). The results showed that the height of the present ceiling's upper space was not the sensitive parameter for heat transfer. Therefore, lower ceiling's upper space is suitable for installing. Among various heat sinks, Model D heat sink had the lowest total thermal resistance. The thermal resistance of the Model D heat sink inserting into the closed-cell aluminum-foam ceiling was only about 0.34 times of that inserting into the wooden ceiling. The other three heat sinks had the similar thermal resistances. The thermal resistances of those three heat sinks inserting into the closed-cell aluminum-foam ceiling were only about 0.33–0.39 times of those inserting into the wooden ceiling. This work demonstrates that the closed-cell aluminum-foam ceiling did help in the cooling of LED lamp.  相似文献   

17.
A multi-objective thermal design optimization and comparative study of electronics cooling technologies is presented. The cooling technologies considered are: continuous parallel micro-channel heat sinks, in-line and staggered circular pin-fin heat sinks, offset strip fin heat sinks, and single and multiple submerged impinging jet(s). Using water and HFE-7000 as coolants, Matlab’s multi-objective genetic algorithm functions were utilized to determine the optimal thermal design of each technology based on the total thermal resistance and pumping power consumption under constant pressure drop and heat source base area of 100 mm2. Plots of the Pareto front indicate a trade-off between the total thermal resistance and pumping power consumption. In general, the offset strip fin heat sink outperforms the other cooling technologies.  相似文献   

18.
This paper describes the use of our previous study's prediction procedures for calculating thermal resistance and pressure drop. The procedures are used in the optimization of heat sink geometries for impingement air-cooling of LSI packages. Two types of heat sinks are considered: ones with longitudinal fins and ones with pin fins. We optimized the heat sink geometries by evaluating 16 parameters simultaneously. The parameters included fin thickness, spacing, and height. For the longitudinal fins, the optimal fin thicknesses were found to be between 0.12 and 0.15 mm, depending on which of the four types of fans were used. For pin fins, the optimal pin diameters were between 0.39 and 0.40 mm. Under constant pumping power, the optimal thermal resistance of the longitudinal fins was about 60% that of the pin fins. For both types of heat sinks, the optimal thermal resistance for four off-the-shelf fans was only slightly (maximum about 1%) higher than the theoretical optimum for the same pumping power. When manufacturing cost performance is considered, the most economical fin thickness and diameter are about 5 to 10 times higher than the optimal values calculated without respect for manufacturing costs. These values almost correspond to the actual limits of extrusion and press heat-sink manufacturing processes. © 1999 Scripta Technica, Heat Trans Asian Res, 28(2): 138–151, 1999  相似文献   

19.
This study investigates the influence of using micro-encapsulated phase change material (MEPCM) on the thermal and hydraulic performance of micro-channel heat sinks used for heat dissipation of high power electronic devices. A three-dimensional, one-phase, laminar flow model of a rectangular channel using water slurry of MEPCM with temperature dependent physical properties was developed. The results showed a significant increase in the heat transfer coefficient under certain conditions for heat flux rates of 100 W/cm2 and 500 W/cm2 that is mainly dependant on the channel inlet and outlet temperatures and the selected MEPCM melting temperature. Lower and more uniform temperatures across the electronic device can be achieved at less pumping power compared to using water only as the cooling fluid.  相似文献   

20.
The paper presents the geometric optimization of the micro-heat sink with straight circular microchannels with inner diameter of Di = 900 μm. The inlet cross-section has a rectangular shape and positioned tangentially to the tube axis with the four different geometries. The fluid flow regime is laminar and water with variable fluid properties is used as a working fluid. The heat flux spread through the bottom sink surface is q = 100 W/cm2. Thermal and hydrodynamic performances of the heat sink are compared with results obtained for conventional channel configuration with lateral inlet/outlet cross-section. Besides, the results are compared with the tangential micro-heat sink with Di = 300 μm. For all the cases, the thermal and hydrodynamic results are compared on a fixed pumping power basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号