共查询到20条相似文献,搜索用时 0 毫秒
1.
A.K. Saha 《International Journal of Heat and Mass Transfer》2003,46(20):3815-3830
A numerical study has been carried out to analyze the unsteady three-dimensional flow and heat transfer in a parallel-plate channel heat exchanger with in-line arrays of periodically mounted rectangular cylinders (pins) at various Reynolds number and geometrical configurations. The three-dimensional unsteady Navier-Stokes and energy equations are solved using higher order temporal and spatial discretizations. The simulations have been carried out for a range of Reynolds number based on cylinder width (180-600) and a Prandtl number of 6.99 (corresponding to water). Conjugate heat transfer calculations have been employed to account for the conduction in the solid cylinder and convection in the fluid. The thermal performance factor (TPF) increases significantly when the flow becomes unsteady. The choice of aspect ratio of the cylinders is judged by their relative increase in friction factor and heat transfer at transitional Reynolds number. The TPF is found to increase with the increase in pitch of the cylinders. The increase in channel height enhances the TPF though the heat transfer decreases at higher channel height. 相似文献
2.
N. García-Hernando A. Acosta-Iborra U. Ruiz-Rivas M. Izquierdo 《International Journal of Heat and Mass Transfer》2009,52(23-24):5433-5446
This work presents an experimental analysis of the hydrodynamic and thermal performance of micro-heat exchangers. Two micro-heat exchangers, characterized by microchannels of 100 × 100 and 200 × 200 μm square cross-sections, were designed for that purpose. The fluid used was deionized water and there was no phase change along the fluid circuit. The fluid pressure drop along the heat exchanger and the heat transfer were measured and corrections were made to isolate the contribution of the microchannels. The results were compared with the predictions of the classical viscous flow and heat transfer theory. The main conclusions show that the experimental results fit well with these theories. No effects of heat transfer enhancement or pressure drop increase were observed as a consequence of the small scale of the microchannels. 相似文献
3.
A mathematical model is developed to predict the transport phenomena during evaporation in the extended meniscus region of a micro-capillary channel. In this model, the vapor pressure variation and the disjoining pressure effect are included and the friction force at the liquid-vapor interface is considered as well. The results show that the local heat transfer coefficient has an extremely large value in the thin film region. The heat transfer rate, however, is larger for the meniscus than for the thin film region. The maximum liquid velocity appears at approximately 40% of the extended meniscus region and the variation of the heat flux has a negligible effect on the maximum liquid velocity. It is also found that the length of the extended meniscus region is affected by the heat flux, the channel height and the dispersion constant. 相似文献
4.
Numerical investigation of fluid flow and heat transfer over louvered fins in compact heat exchanger
《International Journal of Thermal Sciences》2007,46(2):199-211
Numerical investigation of fluid flow and heat transfer characteristics over louvered fins and flat tube in compact heat exchangers is presented in this study. Three-dimensional simulations of single and double row tubes with louvered fins have been conducted. Simulations are performed for different geometries with varying louver pitch, louver angle, fin pitch and tube pitch and for different Reynolds number. Conjugate heat transfer and conduction through the fins are considered. The air-side performance of heat exchanger is evaluated by calculating Stanton number and friction factor. The results are compared with experiment and a good agreement is observed. The local Nusselt number variation along the top surface of the louver is calculated and effects of geometrical parameters on the average heat transfer coefficient is computed. Design curves are obtained which can used to predict the heat transfer and the pressure drop for a given louver geometry. 相似文献
5.
为了应对目前国内电煤供应日趋紧张、价格不断上涨、煤质不稳定的局面,必须对国内外电煤供应市场进行调研和分析,探索相对稳定并具有一定灵活性的煤炭供应渠道。在确保锅炉掺烧国产及进口煤种安全性和经济性,同时满足日益严格的环保要求的前提下,选择印度尼西亚、澳大利亚和俄罗斯等国的部分动力煤与900MW超临界锅炉设计(校核)煤掺烧运行。鉴于储煤场地的局限性及进口动力煤与国内动力煤的煤质有着较大差异,为了使进口动力煤进场后在有效的时间内与锅炉的设计煤种适时掺烧,对进口动力煤在储煤场地的存放特性变化进行了探索,为建立和完善进口煤堆放制度提供理论依据。 相似文献
6.
选取矩形截面平直翅片板翅式换热器的矩形单通道运用fluent软件进行数值模拟。首先对不同波高和波距的三组九种几何尺寸的翅片在同一工况下进行数值模拟,选出每组中传热和阻力综合性能最优者。然后对选出的三种翅片在不同工况下进行数值模拟,最终选出一种传热和阻力综合性能最优的。并对实物换热器进行试验研究,同时将试验结果和数值模拟结果进行对比分析,验证了数值模拟的正确性。 相似文献
7.
Taraprasad Mohapatra Subhankar Ray Sudhansu Sekhar Sahoo Biranchi Narayana Padhi 《亚洲传热研究》2019,48(4):1440-1465
The paper presents numerical investigations of a three fluid heat exchanger (TFHE), which is an improvement on the double pipe heat exchanger, where a helical tube is inserted in the annular space between two straight pipes. The helical tube side fluid, that is, hot water continuously transfers heat to the outer annulus side fluid and innermost tube side fluid. The heat transfer and pressure drop characteristics of the TFHE are assessed for different flow rates and inlet temperatures. With an increment in the volumetric flow rate of the helical tube side fluid and outer annulus side fluid, the overall heat transfer coefficient increases, and the effectiveness decreases for heat transfer from the helical tube side fluid to outer annulus side fluid in both parallel flow and counter flow configurations. It is also observed that with increment in the helical tube side fluid inlet temperature, the overall heat transfer coefficient and effectiveness increases for heat transfer from the helical tube side fluid to outer annulus side fluid in both flow configurations. The parameter, JF factor, has been proposed to evaluate the thermohydraulic behavior of the TFHE, where it is obtained that the behavior of the TFHE is better at a lower helical tube side fluid velocity and higher outer annulus side fluid velocity. 相似文献
8.
Hao Wang Zhenhai Pan Suresh V. Garimella 《International Journal of Heat and Mass Transfer》2011,54(13-14):3015-3023
The process of evaporation from a meniscus into air is more complicated than in enclosed chambers filled with pure vapor. The vapor pressure at the liquid–gas interface depends on both of the evaporation and the vapor transport in the gas environment. Heat and mass transport from an evaporating meniscus in an open heated V-groove is numerically investigated and the results are compared to experiments. The evaporation is coupled to the vapor transport in the gas domain. Conjugate heat transfer is considered in the solid walls, and the liquid and gas domains. The flow induced in the liquid due to Marangoni effects, as well as natural convection in the gas due to thermal expansivity and vapor concentration gradients are simulated. The calculated evaporation rates are found to agree reasonably well with experimentally measured values. The convection in the gas domain has a significant influence on the overall heat transfer and the wall temperature distribution. The evaporation rate near the contact lines on either end of the meniscus is high. Heat transfer through the thin liquid film near the heated wall is found to be very efficient. A small temperature valley is obtained at the contact line which is consistent with the experimental observation. 相似文献
9.
This experiment was carried out using delta winglet arrays of vortex generators (VG) with inline arrangement in a tube heat exchanger to study enhanced heat transfer and flow behaviour. The experiment was conducted for the turbulent flow (Re = 6000 to 27000). In this experiment, different parameters, pitch ratios (PR = 1.6, 2.4, and 4.8), lengths (L = 10, 15, and 20 mm), and attack angles (B = 0°, 10°, 20°, 30°, and 45°) were studied and then their effect on thermal performance was observed. Results indicate that the PR affected f and Nu significantly. For PR = 1.6, VGs showed the highest f and Nu for all of the cases. Vortex generators with L10 B45 PR4.8 achieved the best TPE with 1.23 at Re = 6000. Attack angle B indicated a significant impact on thermal performance and 45 degree showed the TPE of 1.23 at lower Re. Oil film flow and smoke flow visualization were employed to identify the flow vortices and understand flow mechanism. The oil film flow and smoke flow visualization clearly traced longitudinal vortex, and induced vortex, which induced impingement flow and recirculation zone that lead to significant heat transfer enhancement. 相似文献
10.
Shalabh C. Maroo J.N. Chung 《International Journal of Heat and Mass Transfer》2010,53(15-16):3335-3345
A nanoscale evaporating meniscus is simulated in this work using molecular dynamics. The heat and mass transfer characteristics and pressure variation in the non-evaporating and interline regions are studied. Very high heat and evaporation flux rates of the order of 100 MW/m2 and 1000 kg/m2 s, respectively, are achieved. The disjoining pressure increased significantly after the formation of the non-evaporating film. High negative liquid pressure induced due to capillary and disjoining pressures are obtained. Cavitation cannot occur as the film thickness is smaller than the critical cavitation radius, and the meniscus can exist in metastable state. A curve-fitted meniscus boundary condition is developed; a force function of the form Fn = An?3 ? Cn?2 can be applied at the boundaries of a liquid film to create curvature and form a meniscus. 相似文献
11.
This paper examines experimentally the effect of jet vortex technology on enhancing the heat transfer rate within a double pipe heat exchanger by supplying the heat exchanger with water at different vortex strengths. A vortex generator with special inclined holes with different inlet angles was designed, manufactured, and integrated within the heat exchanger. In this study, four levels of Reynolds number for hot water in the annulus (Reh) were used, namely, 10,000; 14,500; 18,030; and 19,600. Similarly, four levels of Reynolds number for cold water in the inner tube (Rec) were used, namely, 12,000; 17,500; 22,500; and 29,000. As for the inlet flow angle (θ), four different levels were selected, namely, 0°, 30°, 45°, and 60°. The temperature along the heat exchanger was measured utilizing 34 thermocouples installed along the heat exchanger. It was found that increasing the inlet flow angle (θ) and/or the Reynolds number results in an increase in the local Nusselt number, the overall heat transfer coefficient, and the ratio of friction factor. It is revealed that the percentage increase in the average Nusselt number due to swirl flow compared to axial flow was 10%, 40%, and 82% for an inlet flow angle of 30°, 45°, and 60°, respectively. 相似文献
12.
Hussein Togun Hakim S. Sultan Aljibori 《International Journal of Heat and Mass Transfer》2011,54(4):766-773
The effect of step height on heat transfer to a radially outward expanded air flow stream in a concentric annular passage was studied experimentally. Separation, subsequent reattachment and developed air flow occurred in the test section at a constant heat flux boundary condition. The experimental investigation was focused on the effect of separation flow on the local and average convection heat transfer. The experimental set-up consists of concentric tubes to form annular passage with a sudden reduction in passage cross-section created by the variations of outer tube diameter at the annular entrance section (D). The outer tube of test section was made of aluminium having 83 mm inside diameter and 600 mm heated length, which was subjected to a constant wall heat flux boundary condition. The investigation was performed in a Re range of 17050-44545, heat flux varied from 719 W/m2 to 2098 W/m2 and the enhancement of step heights were, s = 0 (without step), 6 mm, 14.5 mm and 18.5 mm, which refer to d/D = 1, 1.16, 1.53 and 1.80, respectively.For all cases, an increase in the local heat transfer coefficient was obtained against enhanced heat flux and or Re. The effect of step variation is prominent in heat transfer at the separation region which increases with the rise of step height and it shows a little effect in the redevelopment region. In the separation region, the local heat transfer coefficient increases up to the maximum value at the reattachment point and then decreases gradually in the redevelopment region. The results have been correlated and compared with forced convection heat transfer in annular passage and show a maximum enhancement of 18% (Smax = 18.5 mm) within the range of step height. The present results show good agreement with previous works and have followed similar trends. 相似文献
13.
For the purpose of heat transfer enhancement, the configuration of a shell-and-tube heat exchanger was improved through the installation of sealers in the shell-side. The gaps between the baffle plates and shell is blocked by the sealers, which effectively decreases the short-circuit flow in the shell-side. The results of heat transfer experiments show that the shell-side heat transfer coefficient of the improved heat exchanger increased by 18.2–25.5%, the overall coefficient of heat transfer increased by 15.6–19.7%, and the exergy efficiency increased by 12.9–14.1%. Pressure losses increased by 44.6–48.8% with the sealer installation, but the increment of required pump power can be neglected compared with the increment of heat flux. The heat transfer performance of the improved heat exchanger is intensified, which is an obvious benefit to the optimizing of heat exchanger design for energy conservation. 相似文献
14.
Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger 总被引:2,自引:0,他引:2
The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. 相似文献
15.
Zhenxing Zhao Xiangyu Wang Defu Che Zidong Cao 《International Communications in Heat and Mass Transfer》2011,38(9):1189-1194
The flow and heat transfer characteristics of synthesis gas (syngas) in membrane helical-coil heat exchanger and membrane serpentine-tube heat exchanger under different operating pressures, inlet velocities and pitches are investigated numerically. The three-dimensional governing equations for mass, momentum and heat transfer are solved using a control volume finite difference method. The realizable k-ε model is adopted to simulate the turbulent flow and heat transfer in heat exchangers. There flows syngas in the channels consisting of the membrane helical coils or membrane serpentine tubes, where the operating pressure varies from 0.5 to 3.0 MPa. The numerically obtained heat transfer coefficients for heat exchangers are in good agreement with experimental values. The results show that the syngas tangential flow in the channel consisting of membrane helical coils is significant to the heat transfer enhancement to lead to the higher average heat transfer coefficient of membrane helical-coil heat exchanger compared to membrane serpentine-tube heat exchanger. The syngas tangential velocity in the membrane helical-coil heat exchanger increases along the axial direction, and it is independent of the gas pressure, increasing with the axial velocity and axial pitch rise and decreasing with the radial pitch rise. 相似文献
16.
Niru Kumari Vaibhav Bahadur Marc Hodes Todd Salamon Paul Kolodner Alan Lyons Suresh V Garimella 《International Journal of Heat and Mass Transfer》2010,53(15-16):3346-3356
Enhancement of forced convective heat transport through the use of evaporating mist flow is investigated analytically and by numerical simulation. A two-phase mist, consisting of finely dispersed water droplets in an airstream, is introduced at the inlet of a longitudinally-finned heat sink. The latent heat absorbed by the evaporating droplets significantly reduces the sensible heating of the air inside the heat sink which translates into higher heat-dissipation capacities. The flow and heat transfer characteristics of mist flows are studied through a detailed numerical analysis of the mass, momentum and energy transport equations for the mist droplets and the airstream, which are treated as two separate phases. The coupling between the two phases is modeled through interaction terms in the transport equations. The effects of inlet mist droplet size and concentration on the thermal performance of the heat sink are analyzed parametrically. The results provide insight into the complex transport processes associated with mist flows. The simulations indicate that significantly higher heat transfer coefficients are obtained with mist flows as compared to air flows, highlighting the potential for the use of mist flows for enhanced thermal management applications. 相似文献
17.
A pulsating flow in a pipe was experimentally investigated to determine the effect of pulsation on the rate of heat transfer. The influence of hydrodynamic parameters and characteristics of the pulsation on heat transfer was carefully studied. In order to adjust the pulsating parameters, a self‐oscillator was designed so the length of the resonator and the length of the outlet nozzle could be adjusted. The results show that the heat transfer rate is strongly affected by both the hydrodynamic parameters and the configuration of the resonator. With the increase of the flow rate of the liquid and the length of the chamber, heat transfer is enhanced. There is an optimal length at which the heat transfer enhancement attends to the best. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(5): 279–286, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20020 相似文献
18.
Li-Zhi Zhang 《International Journal of Heat and Mass Transfer》2010,53(23-24):5478-5486
Membrane-based total heat exchangers (or energy recovery ventilators) are the key equipments to fresh air ventilation, which is helpful for the control of respiratory diseases like Swine flu and SARs. Cross flow has been the predominant flow arrangement for these equipments. However performances are limited with this arrangement. A counter flow arrangement is the best. In this research, a quasi-counter flow parallel-plates total heat exchanger is constructed and investigated. A detailed mathematical modeling is conducted and the model is experimentally verified. The temperature and humidity values on membrane surfaces, and in the fluids are solved as a conjugate problem. The fluid flow, heat and mass transport equations in the entry regions are solved directly. The mean Nusselt and Sherwood numbers, and the sensible and latent effectiveness of the exchanger are calculated. It is found that the effectiveness of the current arrangement lie between those for cross flow and those for counter flow arrangements. The results also found that the flow can be divided distinctly into three zones: two cross-like zones and a pure-counter flow zone. The less the cross-like zones are, the larger the pure-counter flow zone is, and the greater the effectiveness is. The study also provides a solution of modeling mass transfer with FLUENT software from heat mass analogy. 相似文献
19.
20.
《International Journal of Heat and Mass Transfer》2007,50(9-10):1855-1864
Numerical investigation was conducted for fluid flow and heat transfer in microchannel cooling passages. Effects of viscosity and thermal conductivity variations on characteristics of fluid flow and heat transfer were taken into account in theoretical modeling. Two-dimensional simulation was performed for low Reynolds number flow of liquid water in a 100 μm single channel subjected to localized heat flux boundary conditions. The velocity field was highly coupled with temperature distribution and distorted through the variations of viscosity and thermal conductivity. The induced cross-flow velocity had a marked contribution to the convection. The heat transfer enhancement due to viscosity-variation was pronounced, though the axial conduction introduced by thermal-conductivity-variation was insignificant unless for the cases with very low Reynolds numbers. 相似文献