首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel design principle is presented and tested, which is able to significantly improve the crack initiation loads of composite panels with stringer terminations. Taking advantage of the stable crack growth in such structures, an artificial crack is introduced which promotes synergistic load transfer of the bolts with the bond-line, drastically reducing the strain energy release rate at the run-out tip and increasing the load transfer capability of the joint.  相似文献   

2.
The behaviour of a composite test specimen with an embedded delamination subjected to transverse tension has been investigated through experimental testing and finite element (FE) analyses. The testing program consisted of specimens in two geometrical configurations; square and rectangular delamination. The initiation and growth of the delamination was numerically predicted by fracture mechanics. FE models were analysed with both MSC.Nastran and Abaqus FE codes. The MSC.Nastran model was used to calculate strain energy release rates employing a crack tip element methodology. The Abaqus model was evaluated using the virtual crack closure technique. Both approaches accurately predicted failure initiation locations as observed in the test specimens. Failure loads were also well predicted. The mode mix at the crack tip in the proposed specimen was found to be similar to the mode mix expected in a conventional in-plane compression specimen.  相似文献   

3.
长桁-翼肋连接对复合材料单加筋板压缩性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用试验和有限元方法研究了复合材料含翼肋单加筋板试验件的压缩性能,试验件包括带有长桁-翼肋连接和不含长桁-翼肋连接2种类型。试验和数值计算研究结果表明:与不含长桁-翼肋连接的试验件相比,带有长桁-翼肋连接的试验件具有较高的刚度和较高的临界屈曲失稳载荷,在后屈曲承载过程中具有较小的形变和较小的最终破坏载荷。试验件的最终破坏模式总是长桁与蒙皮间的界面脱粘,这表明长桁-翼肋连接对加筋板试验件的最终破坏模式无影响。在复合材料翼面结构设计中,需要综合考虑长桁-翼肋连接对加筋板初始临界失稳载荷、后屈曲变形和结构承载能力等方面的影响。  相似文献   

4.
In this paper, the local approach model developed by Gurson–Tvergaard has been applied to simulate both the crack initiation and the crack growth of aged duplex stainless steel. The parameters of the Gurson–Tvergaard model have been obtained, from axisymmetric notched specimen testing, as a function of the ageing time at 400°C, the ferrite content of the steel and the stress triaxiality. After that, to simulate the fracture of CT specimens, finite element (FE) calculations have been effected in order to obtain the stress triaxiality value at each point on the process zone ahead of the crack tip of these specimens. The adequate damage parameters concerning triaxiality are determined from the ones obtained at the notched specimens, in order to be used in FE simulations of fracture behaviour. With them, the corresponding J−Δa curves have been simulated as representative of both the crack initiation and crack propagation stages, and compared with experimental results in order to validate the methodology proposed.  相似文献   

5.
In this paper, the effects of tightening torque (clamping force) on the fatigue crack growth rate and stress intensity factors in cracked single lap simple bolted and hybrid (adhesive/bolted) joints have been studied experimentally and numerically. To do so, series of fatigue crack growth tests for two different amounts of tightening torque in Aluminum alloy 2024-T3 pre-cracked joints have been carried out to record the fatigue crack growth and also the fatigue life of specimens. In the numerical part, finite element method was employed to obtain the stress intensity factors and also the effective stress intensity factor ranges for different crack lengths to explain the behavior of fatigue crack propagation. It was found that the hybrid joint has longer fatigue crack growth life compared to the simple bolted joint at a given bolt tightening torque. The results also showed that a higher bolt tightening torque provides improved fatigue crack growth life for both types of the joints.  相似文献   

6.
The understanding of fatigue crack closure has been proved to be a challenging and controversial topic among the fatigue community over the last three decades. The effect of the specimen (or component) thickness has been shown to have a significant effect on closure behaviour and this seems to be related to the relative size of the plastic zone. Real cracks are inherently three-dimensional; plane stress-like behaviour is found close to the region where the crack front intersects the free surface, whereas most of the crack front will experience something close to plane strain. The aim of the present work is to investigate the influence of specimen thickness on closure behaviour (both close to and remote from the surface) and on fatigue crack propagation. The paper will present results from a simple experimental program, which consists of fatigue testing CT specimens with different thicknesses. Fatigue crack propagation is measured optically. Crack closure is assessed using traditional compliance techniques (clip gauge and back face strain gauge) and Digital Image Correlation methods. Experimental results are compared with two and three-dimensional simulations of plasticity-induced fatigue crack closure. The implications of thickness effects for predicting the propagation of three-dimensional fatigue cracks are discussed.  相似文献   

7.
In this paper creep crack growth behaviour of P92 welds at 923 K are presented. Creep crack growth behaviour for P92 welds are discussed with C* parameter. Creep crack growth behaviour of P92 welds has been compared with that of P91 welds with C* parameter. NSW and NSW-MOD model were compared with the experimental creep crack growth data. Plane strain NSW model significantly overestimates the crack growth rate, and plane stress NSW model underestimates it. Whilst, NSW-MOD model for plane stress and plane strain conditions gives lower and upper bound of the experimental data, respectively.FE analysis of creep crack growth has been conducted. Constrain effect for welded joints has been examined with C* line integrals of C(T) specimens. As a result, constant C* value using the material data of welded joint gives 10 times lower than that of only HAZ property. Whilst, the predicted CCG rates for welded joint are 10 times higher than those for only HAZ properties. Compared with predicted CCG rate from FE analysis and the experimental CCG rate, it can be suggested that creep crack growth tests for lower load level or for large specimen should be conducted, otherwise the experimental data should give unconservative estimation for components operated in long years.  相似文献   

8.
The fatigue crack propagation in a friction stir‐welded sample has been simulated herein by means of two 3‐dimensional finite element method (FEM)‐based analyses. Numerical simulations of the fatigue crack propagation have been carried out by assuming a residual stress field as a starting condition. Two initial cracks, observed in the real specimen, have been assessed experimentally by performing fatigue tests on the welded sample. Hence, the same cracks have been placed in the corresponding FE model, and then a remote load with boundary conditions has been applied on the welded specimen. The material behaviour of the welded joint has been modelled by means of the Ramberg‐Osgood equation, while the non‐linear Kujawski‐Ellyin (KE) model has been adopted for the fatigue crack propagation under small‐scale yielding (SSY) conditions. Owing to the compressive nature of the residual stress field that acts on a part of the cracked regions, the crack closure phenomenon has also been considered. Then, the original version of the KE law has been modified to fully include the closure effect in the analysis. Later, the crack closure effect has also been assessed in the simulation of fatigue propagation of three cracks. Finally, an investigation of the fracture process zone (FPZ) extension as well as the cyclic plastic zone (CPZ) and monotonic plastic zone (MPZ) extensions have been assessed.  相似文献   

9.
In this work, a coupled finite element–element free Galerkin approach has been used to model crack growth in ductile materials under monotonic and cyclic loads. In this approach, a small discontinuous domain near crack is modelled by EFG method, whereas the rest of the domain is modelled by FEM to exploit the advantages of both the methods. A ramp function has been used in the transition region to maintain the continuity between FE and EFG domains. Two plasticity models (GTN and von‐Mises) and three hardening rules (isotropic, kinematic and mixed) have been used to model the nonlinear material behaviour. Four different problems, i.e. single edge notched tension specimen, double edge notched tension specimen, compact tension specimen and three‐point bend specimen, are solved under plane strain condition using J–R curve approach. Finally, a CT specimen problem is also solved by coupled approach using three hardening rules and two plasticity models under cyclic loading.  相似文献   

10.
This work addresses finite element (FE) modelling of creep cracks under reversed and cyclic loads in steels. A constitutive model based on the creep hardening surface developed by Murakami and Ohno has been selected for this purpose. This model is particularly accurate for describing creep under reversed and cyclic loads and requires no additional material constants. An FE algorithm for this model has been derived and implemented into a research code FVP. The algorithm is verified by comparing the numerical predictions with closed form solutions for simple geometries and loading configurations. FE predictions are compared with experimental data for a stationary crack in a compact tension specimen. The stress and strain fields in the vicinity of a crack under a sustained load are compared with those for the intermediate unloading case. Several integral fracture parameters are investigated as to their appropriateness for describing creep cracks under reversed and cyclic loads.  相似文献   

11.
The article presents two‐stage fatigue life evaluation of a stiffened aluminium aircraft fuselage panel, subject to ground–air–ground pressure cycles, with a bulging circumferential crack and a broken stringer. As a worst‐case scenario, it is assumed that double cracks start at the edge of a rivet hole both in the skin and in the stringer simultaneously. In the first stage, fatigue crack growth analysis is performed until the stringer is completely broken with the crack on the fuselage skin propagating. After the stringer is completely broken, the effect of bulging crack on the fatigue life of the panel is investigated utilizing the stress intensity factors determined by the three‐dimensional finite element analyses of the fuselage panel with the broken stringer. It is concluded that bulging of the skin due to the internal pressure can have significant effect on the stress intensity factor, resulting in fast crack propagation after the stringer is completely broken.  相似文献   

12.
This paper describes a novel modelling process for creep crack growth prediction of a 316 stainless steel using continuum damage mechanics, in conjunction with finite element (FE) analysis. A damage material behaviour model, proposed by Liu and Murakami [1], was used which is believed to have advantages in modelling components with cracks. The methods used to obtain the material properties in the multiaxial form of the creep damage and creep strain equations are described, based on uniaxial creep and creep crack growth test data obtained at 600 °C. Most of the material constants were obtained from uniaxial creep test data. However, a novel procedure was developed to determine the tri-axial stress state parameter in the damage model by use of creep crack growth data obtained from testing of compact tension (CT) specimens. The full set of material properties derived were then used to model the creep crack growth for a set of thumbnail crack specimen creep tests which were also tested at 600 °C. Excellent predictions have been achieved when comparing the predicted surface profiles to those obtained from experiments. The results obtained clearly show the validity and capability of the continuum damage modelling approach, which has been established, in modelling the creep crack growth for components with complex initial crack shapes.  相似文献   

13.
卜一之  金通  李俊  张清华 《工程力学》2019,36(6):211-218
纵肋与横隔板交叉构造细节是正交异性钢桥面板最易发生疲劳开裂的构造细节,通过建立有限元数值模型,采用断裂力学方法,研究栓接角钢加固方式对该处疲劳易损细节穿透型裂纹的加固效果。基于疲劳试验足尺节段模型相对应有限元模型,建立了纵肋与横隔板焊接处穿透型疲劳裂纹模型,针对栓接角钢和纵肋外侧栓接钢板两种加固技术的加固效果进行评估。研究结果表明:钢桥面板纵肋与横隔板交叉构造细节的疲劳裂纹扩展至一定长度后将发展成穿透型裂纹,裂纹面受力复杂,纵肋腹板内外侧疲劳裂纹扩展特性表现的不一样,但是随着裂纹扩展的逐步进行,裂纹尖端的开裂模式均以复合型开裂为主;栓接角钢加固方式主要抑制纵肋与横隔板交叉构造细节易损部位疲劳裂纹的I型开裂,因此能很好地抑制短裂纹的扩展,但对于该细节处以复合形式扩展的穿透型疲劳裂纹的加固效果并不显著;在纵肋外侧栓接半U形钢板的加固方法能有效改善穿透型疲劳裂纹的等效应力强度因子,并且加固之后均保持在裂纹扩展阈值以下,表明该加固方式对穿透型疲劳裂纹有良好加固效果。  相似文献   

14.
A model to assess the fatigue behaviour of ageing aircraft fuselage   总被引:1,自引:0,他引:1  
A computer efficient model for assessing the fatigue behaviour of ageing aircraft components in the presence of multiple site damage is introduced. The model involves the computation of crack initiation scenarios on the basis of a probabilistic approach and the estimation of the fatigue behaviour of complex, highly loaded aircraft structures using a deterministic concept. To reduce the computing effort because of the model size and mesh difficulties in crack propagation calculations, a sub-structuring procedure under the FE method is utilized. An incremental approach for calculating crack initiation and crack propagation has been involved; it leads to a further essential reduction of the computing effort. Computer simulation is compared with experimental results for characteristic multiple site damage problems of aluminium 2024 lap and butt joints.  相似文献   

15.
The effects of partial surface shot peening on the fatigue crack growth behaviour of a ferritic steel have been experimentally investigated in this paper. Dog‐bone specimens fabricated from Optim700QL were tested under tension‐tension fatigue loads. Three distinct extents of partial shot peening, with respect to the crack tip and specimen symmetry line, were tested. The fatigue crack growth results from these experiments have been compared with those obtained from the same specimen geometry but with no peening. The results show that the residual stress fields formed ahead of the initial notch tip due to the partial peening process play a significant role in the fatigue crack growth behaviour of the material and effectively result in accelerated crack propagation at the midwidth of the specimens. It has been shown in this study that partial peening can lead to a fatigue crack growth rate around twice as fast as that of the unpeened specimen.  相似文献   

16.
This paper deals with numerical investigation on a stiffened composite panel under longitudinal compression load, in presence of artificial delamination defects between skin/stringer interface layers.At first, both the experimental and numerical non-linear equilibrium paths were determined, until the failure load value of the structure was reached. Then local evaluation of the energy release rate parameter was performed at defect front, by means of a hybrid (FEM/analytical) procedure based on a particularized virtual crack closure technique. The same FE shell model was used to perform both global and local calculations by means of a single analysis.  相似文献   

17.
The room-temperature creep behavior on crack tip of compact tensile (CT) specimen for commercially pure titanium (CP-Ti) was studied by experiment and finite element (FE) simulation in this paper. The experimental results indicated that the time-dependent deformation was observed on the crack tip of CP-Ti CT specimen at room temperature, which agreed with the primary creep, and crack propagation was not observed. In order to consider the creep behavior on crack tip, time-dependent J-integral was used to characterize the stress fields near crack tip. The room-temperature creep behavior on crack tip was analyzed by FE simulation, which was verified by experimental results. Then, the strain fields under different stress states were analyzed by FE simulation. The influences of the locations to crack tip and load on the room-temperature creep were analyzed, which shows that the creep significance on crack tip is enhanced with increasing of load and decreasing of distance to crack tip. The estimation formula of creep strain value along ligament direction of CP-Ti CT specimen was established and verified by FE simulation results.  相似文献   

18.
ABSTRACT Delamination is one of the most frequent failure modes in laminated composites. Its importance is crucial, because a delamination can occur in the interior of a panel without any noticeable damage on the surface, drastically reducing its strength and stiffness. A study has to be made on critical dimensions of delaminations and their shape, through the calculation of the strain energy release rate (SERR), G. This study was performed numerically, for a given geometry, with varying loads and shapes of delamination, in pure and mixed‐mode propagation. All numerical values were obtained with three‐dimensional finite element (FE) analyses from a commercial package. The use of three‐dimensional analyses in simple geometries helps establish the basis for the more complex ones, and the correspondence with the usual analytical or numerical bi‐dimensional plane‐strain analysis. The conclusions were (a) G is not constant along the crack tip, even for mode I propagation and straight crack tip; (b) the mean value of G obtained from a three‐dimensional analysis equals the value obtained in bi‐dimensional plane‐strain analysis; (c) in mixed‐mode propagation, the method exhibits a good correlation with experimental results and (d) the shape and mode partitioning of the SERR depend not only on the loading, but also on the shape of the crack front.  相似文献   

19.
In stiffened panels with defects, such as skin delaminations or stringer debonding, buckling may occur prior to the designed critical buckling load. Depending on the damage parameters, such defects may also affect the post-buckling behaviour and consequently the structural performance. An automated finite element (FE) modelling tool has been developed to predict the post-buckling behaviour of panels. It was coupled with a linear elastic fracture mechanics approach to determine damage criticality, based on the “no-growth” principle. The structural behaviour in the post-buckling range and its interaction with the damage parameters were analysed. Local buckling occurred as a result of localised stiffness reduction in the damage region. Global buckling occurred when sufficient in-plane strain was reached. The onset of local buckling was an important factor on stringer debonding criticality as the local buckling mode had an effect on the corresponding global buckling. In comparison, the onset of local buckling for the skin delamination was lower due to the thin sub-laminate separation. However, it was less influential on the damage criticality because the local buckling slowly dissipated in the far post-buckling range. It was found that the initiation of local buckling, and the interaction between the local and global buckling mode, would determine the damage criticality.  相似文献   

20.
Abstract:  Standard fracture toughness tests require standard specimens with the presumption that mechanical properties are uniform in the crack growth direction. Standards for crack tip opening displacement (CTOD) fracture tests prescribe remote crack mouth opening displacement, which can lead to inadequate results in the case of heterogeneous materials properties. This paper describes the application of an object grating method (OGM) on the fracture behaviour of a heterogeneous specimen. Fracture behaviour is described by measuring deformation on the surface of a specimen, in terms of CTOD and, consequently, by strain determination. An OGM is advantageously used when measuring modified CTOD tests on two specimens with an initial crack in a macroscopic heterogeneous welded joint. Results significantly show that fracture behaviour depends on the material in the vicinity of the crack tip concerning the direction of crack propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号