首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This present investigation deals about the machinability comparison of cryogenically treated 15-5 PH stainless steel with various cutting tools such as uncoated tungsten carbide, cryogenic-treated tungsten carbide and wiper geometry inserts. Cryo-treated PH stainless steel is considered as the work material in this investigation and experimental trials were performed under dry turning condition. The machinability aspects considered for evaluation are cutting force (Fz), surface roughness (Ra) and tool wear. The outcomes of experimentation reveal that the tungsten carbide inserts which are cryogenically treated provide improved performance in machining while comparing with conventional and wiper geometry inserts at all machining conditions. The measured cutting force and the observed flank wear were less for the cryo-treated inserts. However, wiper tool produces a better surface finish during machining. An artificial intelligence decision-making tool named Adaptive Neuro Fuzzy Inference System has been evolved to determine the relation among the considered input machining variables and output measures, namely cutting force and surface roughness of the machined surface. An analysis has been performed to compare the results obtained from developed models and experimental results.  相似文献   

2.
In order to eradicate the use of mineral based cutting fluid, the machining of Ni–Cr–Co based Nimonic 90 alloy was conducted using environment friendly sustainable techniques. In this work, uncoated tungsten carbide inserts were employed for the machining under dry (untreated and cryogenically treated), MQL, and cryogenic cutting modes. The influence of all these techniques was examined by considering tool wear, surface finish, chip contact length, chip thickness, and chip morphology. It was found that the cryogenically treated tools outperformed the untreated tools at 40 m/min. At cutting speed of 80 m/min, MQL and direct cooling with liquid nitrogen brought down the flank wear by 50% in comparison to dry machining. Similarly at higher cutting speed, MQL and cryogenic cooling techniques provided the significant improvement in terms of nose wear, crater wear area, and chip thickness value. However, both dry and MQL modes outperformed the cryogenic cooling machining in terms of surface roughness value at all the cutting speeds. Overall cryotreated tools was able to provide satisfactory results at lower speed (40 m/min). Whereas both MQL and cryogenic cooling methods provided the significantly improved results at higher cutting speeds (60 and 80 m/min) over dry machining.  相似文献   

3.
The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 µm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.  相似文献   

4.
Coolant supplied by high pressure into the cutting zone has shown the lower thermal loads on the tool when machining difficult-to-cut materials as the Alloy 718. In this study, we investigate how the combination of high-pressure cooling and tool–surface modifications can lead to further improvements regarding tool life. The general approach is to enhance the coolant–tool interaction by increasing the contact area. Therefore, we machined cooling features into flank and rake faces of commercially available cemented tungsten carbide inserts. In this way, the surface area was increased by ~ 12%. After the cutting tests, the tools were analyzed by scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Compared with conventional tools, the tool modifications reduced the flank wear by 45% for the investigated cutting parameters. Furthermore, we were able to significantly increase the cutting speed and feed rate without failure of the tool. The investigated surface modifications have great potential to enhance the productivity of metal cutting processes.  相似文献   

5.
A series of metal cutting experiments was performed on a CNC lathe to evaluate the performance of various coatings on different tool substrates. The workpiece material was plain medium carbon steel and the cutting tool materials were carbide and cermet inserts coated with various single as well as multilayer coatings. Machining was done under various cutting conditions of speed and feed-rate, and for various durations of Cutting. The output parameters studied were the cutting forces (axial, radial and tangential), the surface roughness of the workpiece, as well as the tool wear (crater and flank wear). From these results, the performances of the various cutting inserts are evaluated and compared. Results show that cutting forces are significantly lower when using coated cermets than when using coated carbides although different coatings on the same substrate also result in different cutting forces. However, there is less difference in the surface roughness of the finished workpiece for the various coatings and substrates.  相似文献   

6.
Short tool life and rapid tool wear in micromachining of hard-to-machine materials remain a barrier to the process being economically viable. In this study, standard procedures and conditions set by the ISO for tool life testing in milling were used to analyze the wear of tungsten carbide micro-end-milling tools through slot milling conducted on titanium alloy Ti-6 Al-4 V. Tool wear was characterized by flank wear rate,cutting-edge radius change, and tool volumetric change. The effect of machining parameters, such as cutting speed and feedrate, on tool wear was investigated with reference to surface roughness and geometric accuracy of the finished workpiece. Experimental data indicate different modes of tool wear throughout machining, where nonuniform flank wear and abrasive wear are the dominant wear modes. High cutting speed and low feedrate can reduce the tool wear rate and improve the tool life during micromachining.However, the low feedrate enhances the plowing effect on the cutting zone, resulting in reduced surface quality and leading to burr formation and premature tool failure. This study concludes with a proposal of tool rejection criteria for micro-milling of Ti-6 Al-4 V.  相似文献   

7.
EN-31 (AISI 52100, hardness 55 HRC) is one of the difficult-to-cut steel alloys and it is commonly used in shafts and bearings. Nowadays, it is becoming a challenge to the cutting tool material for economical machining of extremely tough and hard steels. In general, CBN and PCBN tools are used for machining hardened steel. However, machining cost using these tools becomes higher due to high tool cost. For this purpose, carbide tool using selective coatings is the best substitute having comparable tool life, while its cost is approximately one-tenth of CBN tool. In this work, the newly developed second-generation TiAlxN super nitride (i.e., HSN2) is selected for PVD coating on carbide tool insert and further characterized using thermogravimetric analysis and differential scanning calorimetry for oxidation and thermal stability at high temperature. Later, HSN2-coated carbide inserts are successfully tested for their sustainability to expected tool life for turning of AISI 52100 steel. In the present study, forces, surface finish, and tool wear are used as a measure to appraise the performance of hard turning process. Experimentally, it is found that speed, feed rate, and depth of cut have considerable impact on forces, insert wear, and surface roughness of the machined surface.  相似文献   

8.
Abstract

In the present investigation, machinability issues of zinc–aluminium (ZA43) alloy reinforced with silicon carbide particles (SiC) were evaluated. The fabrication of composite was done through liquid metallurgy technique. Metal matrix composite (MMC) was subjected to turning using conventional lathe with three grades of cutting tools, namely, uncoated carbide tool, coated carbide tool and ceramic tool. Surface roughness and tool wear were measured during the machining process. Results reveal that roughness increases with increase in the reinforcement concentration and particle size. Feed has direct influence on roughness, i.e. surface deteriorates with higher feeds. Depth of cut has very minimum effect on the surface roughness, while inverse effect of cutting speed on the roughness was observed (i.e. increase in the cutting speed leads to better finish on the specimen). Tool wear was studied during the investigation, and it was noticed that MMC with higher reinforcement concentration and particle size cause severe wear on the flank of the cutting tool. Increase in the cutting speed, feed and depth of cut also increases the flank wear on the tool. Out of all the three grades of tools, coated carbide tool outperformed uncoated carbide and ceramic tools.  相似文献   

9.
This paper examines the flank and crater wear characteristics of coated carbide tool inserts during dry turning of steel workpieces. A brief review of tool wear mechanisms is presented together with new evidence showing that wear of the TiC layer on both flank and rake faces is dominated by discrete plastic deformation, which causes the coating to be worn through to the underlying carbide substrate when machining at high cutting speeds and feed rates. Wear also occurs as a result of abrasion, as well as cracking and attrition, with the latter leading to the wearing through the coating on the rake face under low speed conditions. When moderate speeds and feeds are used, the coating remains intact throughout the duration of testing. Wear mechanism maps linking the observed wear mechanisms to machining conditions are presented for the first time. These maps demonstrate clearly that transitions from one dominant wear mechanism to another may be related to variations in measured tool wear rates. Comparisons of the present wear maps with similar maps for uncoated carbide tools show that TiC coatings dramatically expand the range of machining conditions under which acceptable rates of tool wear might be experienced. However, the extent of improvement brought about by the coatings depends strongly on the cutting conditions, with the greatest benefits being seen at higher cutting speeds and feed rates. Among these methods, tool condition monitoring using Acoustic Techniques (AET) is an emerging one. Hence, the present work was carried out to study the stability, applicability and relative sensitivity of AET in tool condition monitoring in turning.  相似文献   

10.
Abstract

A free-cutting 0·08%C steel has been turned dry using uncoated fine–grained cemented carbide tools and both uncoated and TiN-coated (by chemical vapour deposition)T 42 high-speed steel tools. Temperature estimates from the high–speed steel tools show that coating reduces the maximum rake-face temperature by about 125 K over a range of cutting speeds, permitting higher cutting speeds to be used before the onset of cratering. The wear mechanisms and built-up-edge behaviour have been investigated in terms of the tool/chip interface temperature and the relative plasticity of MnS inclusions. Manganese sulphide seems to have a higher affinity for the TiN coating than for the uncoated tools, permitting easier interfacial shear, and reducing contact area and built-up-edge size. With coated tools a built-up cap of workpiece material forms over the cutting edge, protecting it from wear; as a result there is only a small initial improvement in surface finish, but since nose wear is reduced, surface finish is maintained over a longer cutting period than with uncoated tools.

MST/212  相似文献   

11.
Monitoring the condition of the cutting tool in any machining operation is very important since it will affect the workpiece quality and an unexpected tool failure may damage the tool, workpiece and sometimes the machine tool itself. Advanced manufacturing demands an optimal machining process. Many problems that affect optimization are related to the diminished machine performance caused by worn out tools. One of the most promising tool monitoring techniques is based on the analysis of Acoustic Emission (AE) signals. The generation of the AE signals directly in the cutting zone makes them very sensitive to changes in the cutting process. Various approaches have been taken to monitor progressive tool wear, tool breakage, failure and chip segmentation while supervising these AE signals. In this paper, AE analysis is applied for tool wear monitoring in face milling operations. Experiments have been conducted on En-8 steel using uncoated carbide inserts in the cutter. The studies have been carried out with one, two and three inserts in the cutter under given cutting conditions. The AE signal analysis was carried out by considering signal parameters such as ring down count and RMS voltage. The results show that AE can be effectively used to monitor tool wear in face milling operation.  相似文献   

12.
Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool–chip interface using liquid nitrogen (LN2). This paper presents results on the effect of LN2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75–125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN2 cooling, it has been found that the cutting temperature was reduced by 57–60% and 37–42%; the tool flank wear was reduced by 29–34% and 10–12%; the surface roughness was decreased by 33–40% and 25–29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.  相似文献   

13.
The paper deals with cutting speed in range 3 m?min‐1 up to 2200 m?min‐1 and its complex impact mainly on chip macroscopic shape, chip microstructure, chip compression, tool wear, tool life and machined surface quality and interprets and compares the effects regarding low, conventional, high and very high speed machining based on the dry turning of carbon steel by sintered carbide coated by titanium nitride and ceramic cutting inserts. The deformation zone response for different cutting speeds at the tool‐chip‐workpiece interfaces and their effect on tool wear were studied. The extensive (so called complete) experiments within wide range of values and large number of measurements were carried out. The formation of secondary chip occurring in high speed turning is reported. Moreover, the paper analyses the total machining time involving tool replacement time in terms of high speed machining regarding the obtained experimental results.  相似文献   

14.
针对铝基碳化硅切削加工中刀具易磨损、寿命低、切削难度大和加工成本高等问题,选用不同材料的硬质合金铣刀及金刚石铣刀进行切削加工实验,并利用扫描电镜和工具显微镜对高体积分数铝基碳化硅铣削时刀具磨损形态进行了分析研究.研究表明:硬质合金刀具前刀面和刃口磨损主要形式为粘结磨损和微崩刃,后刀面磨损主要为刻划磨损,而金刚石铣刀加工时刀具磨损很小;YG6X铣刀材料微观组织致密,抗磨损能力较强,宜粗加工时选用;金刚石刀体的硬度远大于SiC颗粒,且金刚石与工件的摩擦系数小,金刚石铣刀寿命远大于硬质合金铣刀,宜精加工时选用.  相似文献   

15.
This paper deals with the study of the nanotexturing process of the cutting tool inserts with the influence of a magnetorheological fluid-based texturing method. The rake and flank surface of the cutting tool inserts were finished with a silicon carbide abrasive mixture of a magnetorheological fluid. Experimentation is conducted with input variables such as voltage, gap width, and polishing time to achieve the desired value of % reduction of surface roughness, polishing rate, andpolishing time. The surface roughness is found to be less than 40?nm for textured and 120?nm for non-textured inserts with a lesser polishing time. A higher polishing rate of the cutting tool inserts is achieved at a working voltage of 36?V and a gap width of 0.75?mm. The machinability characteristics of the nanotextured inserts are based on the cutting force; tool wear is studied for the turning operation of Duplex stainless steel. The tool flank wear is observed to be 0.63?mm, after 13th pass when turned with an unpolished insert and 0.612?mm after the 19th pass with a polished insert. From the results, it is found that the nanotextured inserts could achieve a tool life of 60% higher than the un-textured inserts in machining the duplex stainless steel.  相似文献   

16.
CRYOGENIC MACHINING OF KEVLAR COMPOSITES   总被引:2,自引:0,他引:2  
Previous attempts to machine Kevlar aramid fibre reinforced plastics (KFRP) with conventional cutting tools have proven to be extremely difficult. This has somewhat restricted the material's usage, often negating the advantages of its high strength to weight ratio and fatigue tolerance. The present paper describes a novel technique of machining KFRP under cryogenic conditions with remarkable results compared to those obtained at ambient temperatures. The investigation carried out with turning operation shows dramatic improvement of the tool performance and surface quality. The effects of various machining parameters such as workpiece temperature, cutting speed and tool geometry on the machinability of KFRP are presented and analyzed. It appears that care is necessary to judge the tool life as the typical tool wear growth and surface finish or cutting force may produce contradictory results. It is also suggested that, for KFRP, surface finish of the machined workpiece is a very good criterion to determine the tool life. To aid the understanding of the machining mechanics, a microscopic investigation of the cutting zone while actually machining a testpiece at ambient and cryogenic temperatures is also reported.  相似文献   

17.
Under higher cutting conditions, machining of 17-4 precipitation hardenable stainless steel (PH SS) is a difficult task due to the high cutting temperatures as well as accumulation of chips at the machining zone, which causes tool damage and impairment of machined surface finish. Cryogenic machining is an efficient, eco-friendly manufacturing process. In the current work, cutting temperature, tool wear (flank wear (Vb) and rake wear), chip morphology, and surface integrity (surface topography, surface finish (Ra), white layer thickness (WLT)) were considered as investigative machinability characteristics under the cryogenic (liquid nitrogen), minimum quantity lubrication (MQL), wet and dry environments at varying cutting velocities while machining 17-4 PH SS. The results show that the maximum cutting temperature drop found in cryogenic machining was 72%, 62%, and 61%, respectively, in contrast to dry, wet, and MQL machining conditions. Similarly, the maximum tool wear reduction was found to be 60%, 55%, and 50% in cryogenic machining over the dry, wet, and MQL machining conditions, respectively. Among all the machining environments, better surface integrity was obtained by cryogenic machining, which could produce the functionally superior products.  相似文献   

18.
Vibration-Assisted Precision Machining of Steel with PCD Tools   总被引:1,自引:0,他引:1  
This article presents experimental results of precision machining of steel alloys with polycrystalline diamond tools. Ultrasonic vibration-assisted cutting was tried out for expanding the application of diamond tools for high-precision and high-quality machining of ferrous materials. The experimental results show that compared with conventional turning, the cutting performance, in terms of cutting force, surface finish, and tool life, was improved by applying ultrasonic vibration to the cutting tool. The cutting forces and tool wear measured in vibration cutting are much lower than those in conventional cutting. The tool wear mechanism was discussed on the basis of the observation of wear zone.  相似文献   

19.
Abstract

Four low carbonfree-cutting steels (0·11% carbon resulphurised, 0·11% carbon leaded–resulphurised, 0·08% carbon resulphurised, and 0·15% carbon leaded) were turned, dry, with a series of six types of cutting tool in which rake angle, tool material, and coating were varied (5° rake, high speed steel, TiN coated and uncoated; 15° rake, high speed steel, TiN coated and uncoated; 5° rake, cemented carbide, TiN coated and uncoated) in order to determine the optimum tool–workpiece combination for three cutting speed ranges: a low speed range in which the built-up edge (BUE) was forming or about to form; a speed range covering the BUE regime; and a higher speed range in which the BUE became a built-up layer (BUL). Tool–workpiece interaction was assessed by measurement of cutting forces, chip form, surface finish, tool temperature, and wear. It is suggested by the results that the best combination in the low speed range is that of leaded–resulphurised steel and uncoated high speed steel. In the BUE range, the combination of leaded steels and uncoated tools should be avoided; at higher speeds, coated tools are preferred, with non-resulphurised leaded steel giving the lowest tool temperatures and highest cutting speeds before ultimate failure. These recommendations should be treated with caution and used only as guidelines.

MST/867  相似文献   

20.
The present research work has been undertaken with a view to investigate the influence of CVD multilayer coated (TiN/TiCN/Al2O3/ZrCN) and cutting speed on various machining characteristics such as chip morphology, tool wear, cutting temperature, and machined surface roughness during dry turning of 17-4 PH stainless steel. In order to understand the effectiveness of CVD multilayer coated tool a comparison has been carried out with that of uncoated carbide insert. The surface roughness and cutting temperature obtained during machining with chemical vapor deposition (CVD) multilayer coated tool was higher than that of uncoated carbide insert at all cutting velocity. However, the results clearly indicated that CVD multilayer coated tool played a significant role in restricting various modes of tool failure and reducing chip deformation compared to its uncoated counterpart. Adhesion and abrasion were found to be dominating wear mechanism with flank wear, plastic deformation, and catastrophic failure being major tool wear modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号