首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
An experimental study was carried out to investigate the R134a dry-out critical heat flux (CHF) characteristics in a horizontal helically-coiled tube. The test section was heated uniformly by DC high-power source, and its geometrical parameters are the outer diameter of 10 mm, inner diameter of 8.4 mm, coil diameter of 300 mm, helical pitch of 75 mm and valid heated length of 1.89 m. The experimental parameters are the outlet pressures of 0.30–0.95 MPa, mass fluxes of 60–500 kg m?2 s?1, inlet qualities of ?0.36–0.35 and heat fluxes of 7.0 × 103–5.0 × 104 W m?2. A method based on Agilent BenchLink Data Logger Pro was developed to determine the occurrence of CHF with a total of 68 T-type thermocouples (0.2 mm) set along the tube for accurate temperature measurement. The characteristics of wall temperatures and the parametric effect on dry-out CHF showed that temperature would jump abruptly at the point of CHF, which usually started to form at the front and offside (270° and 90°) of the outlet cross-section. The CHF values decrease nearly linearly with increasing inlet qualities, while they decrease more acutely with increasing critical qualities, especially under larger mass flux conditions. The mass flux has a positive effect on CHF enhancement, but the pressure has negative one. A new dimensionless correlation was developed to estimate dry-out CHF of R134a flow boiling in horizontal helically-coiled tubes under current experimental conditions and compared to calculated results from Bowring and Shah correlations.  相似文献   

2.
A critical heat flux (CHF) study of the vertical up-flow of water through multiple thin rectangular channels was conducted. Pressures varied from 89.8 to 115 kPa, inlet temperatures from 291 to 306 K, and mass fluxes from 9.5 to 39 kg m?2 s?1. Electrical resistance heaters embedded in aluminum provided a uniform heat flux. A more universal and robust CHF correlation based on the geometry of the Advanced Test Reactor at Idaho National Laboratory was developed. This new CHF correlation predicts 126 data points from this and three previous studies within an error of ±8.5% with a 95% confidence.  相似文献   

3.
This paper presents an experimental investigation of laminar film condensation of R134a in a vertical smooth tube having an inner diameter of 7–8.1 mm and a length of 500 mm. Condensation experiments were performed at mass fluxes of 29 and 263 kg m?2 s?1. The pressures were between 0.77 and 0.1 MPa. The heat transfer coefficient, film thickness and condensation rate during downward condensing film were determined. The results show that an interfacial shear effect is significant for the laminar condensation heat transfer of R134a under the given conditions. A new correlation for the condensation heat transfer coefficient is proposed for practical applications.  相似文献   

4.
The effects of pressure on flow boiling instabilities in microchannels were experimentally studied. Experiments were conducted using water in 223 μm hydraulic diameter microchannels with mass fluxes ranging from 86 to 520 kg/m2 s and pressures ranging from 50 to 205 kPa. Onset of flow oscillation, critical heat flux (CHF) conditions, local transient temperature measurements along with flow boiling visualization were obtained and studied. System pressure was found to significantly affect flow instabilities. For high pressure, it was observed that boiling instabilities were significantly delayed and CHF was extended to high mass qualities. Local temperature measurements also revealed lower magnitudes and higher frequencies of oscillations at high system pressures.  相似文献   

5.
Experimental studies on critical heat flux (CHF) have been conducted in a uniformly heated vertical tube of 12.7 mm internal diameter and 3 m length at different reduced pressures ranging from 0.24 to 0.99 with R-134a as the working fluid. The onset of CHF was determined by the sudden rise in the wall temperature of the electrically heated tube. Experiments were performed over a wide range of parameters: mass flux values from 200 to 2000 kg/m2 s, pressure from 10 to 39.7 bars and heat flux from 2 to 80 kW/m2 and exit quality from 0.17 to 0.94. The results show considerably lower critical heat flux at high pressures. Well known CHF prediction methods, such as the look-up table and correlations of earlier workers show poor agreement at high pressures. A new correlation has been proposed to estimate the CHF in uniformly heated vertical tubes up to the critical pressure and over a wide range of parameters.  相似文献   

6.
Recent reviews of flow boiling heat transfer in small tubes and channels have highlighted the need for predictive correlations that are applicable over a wide range of parameters and across different studies. A composite correlation is developed in the present work which includes nucleate boiling and convective heat transfer terms while accounting for the effect of bubble confinement in small channels. The correlation is developed from a database of 3899 data points from 14 studies in the literature covering 12 different wetting and non-wetting fluids, hydraulic diameters ranging from 0.16 to 2.92 mm, and confinement numbers from 0.3 to 4.0. The mass fluxes included in the database range from 20 to 3000 kg m?2 s?1, the heat fluxes from 0.4 to 115 W cm?2, the vapor qualities from 0 to 1, and the saturation temperatures from ?194 to 97 °C. While some of the data sets show opposing trends with respect to some parameters, a mean absolute error of less than 30% is achieved with the proposed correlation.  相似文献   

7.
Experiments on flow boiling heat transfer in high aspect ratio micro-channels with FC-72 were carried out. Three channels with different hydraulic diameters (571, 762 and 1454 μm) and aspect ratios (20, 20 and 10) were selected. The tested mass fluxes were 11.2, 22.4 and 44.8 kg m?2 s?1 and heat fluxes ranging from 0–18.6 kW m?2. In the present study, boiling curves with obvious temperature overshoots are presented. Average heat transfer coefficient and local heat transfer coefficient along stream-wise direction are measured as a function of heat flux and vapour quality respectively. Slug-annular flow and annular flow are the main flow regimes. Convective boiling is found to be the dominant heat transfer mechanism. Local heat transfer coefficient increases with decreasing hydraulic diameter. Moreover, the effect of hydraulic diameter is more significant when mass flux is higher. The unique channel geometry is considered as the decisive reason of the flow regimes as well as heat transfer mechanisms.  相似文献   

8.
This work proposes a new mechanistic model for predicting the critical heat flux (CHF) in horizontal pool boiling systems. It is postulated that when the vapor momentum flux is sufficient to lift the liquid macrolayer from the heating surface, wetting is no longer feasible, and a transition from nucleate to film boiling occurs. This is the same mechanism that has found success in predicting CHF in flow boiling systems. An experimental investigation of CHF with pentane, hexane, and FC-72 in saturated horizontal pool boiling with chamber pressures of 150, 300, and 450 kPa provides evidence that the new model captures the variation of CHF with pressure reasonably well compared with other well known models. The new model is also compared with existing data from the literature over a reduced pressure range of 2 × 10?5–2 × 10?1. The mean deviation between the predicted and measured CHF is typically within 20% over the parameter space covered.  相似文献   

9.
New experimental critical heat flux results for saturated boiling conditions have been obtained for R236fa flowing in a silicon multi-microchannel heat sink composed of 67 parallel channels, 223 μm wide, 680 μm high and with 80 μm thick fins separating the channels. The microchannel length was 20 mm. The footprint critical heat fluxes measured varied from 112 to 250 W/cm2 and the wall critical heat fluxes from 21.9 to 52.2 W/cm2 for mass velocities from 276 to 992 kg/m2s. When increasing the mass velocity, the wall critical heat flux was observed to increase. The inlet saturation temperatures (20.31 ? Tsat,in ? 34.27 °C) and the inlet subcoolings (0.4 ? Δ Tsub ? 15.3 K) were found to have a negligible influence on the saturated CHF. The best methods for predicting the data were those of Wojtan et al. [L. Wojtan, R. Revellin, J. R. Thome, Investigation of critical heat flux in single, uniformly heated microchannels, Exp. Therm. Fluid Sci. 30 (2006) 765–774] and Revellin and Thome [R. Revellin, J. R. Thome, A theoretical model for the prediction of the critical heat flux in heated microchannels, Int. J. Heat Mass Transfer 50 (in press)]. They both predict the experimental CHF results with a mean absolute error of around 9%. Using the critical vapour quality, an annular-to-dryout transition is also proposed as a limit in a diabatic microscale flow pattern map. Pressure drop measurements were measured and analysed, showing that the homogeneous model could correctly predict the observed trends.  相似文献   

10.
Critical heat flux (CHF) and pressure drop of subcooled flow boiling are measured for a microchannel heat sink containing 75 parallel 100 μm × 200 μm structured surface channels. The heated surface is made of a Cu metal sheet with/without 2 μm thickness diamond film. Tests and measurements are conducted with de-ionized water, de-ionized water +1 vol.% MCNT additive solution, and FC-72 fluids over a mass velocity range of 820–1600 kg/m2 s, with inlet temperatures of 15(8.6)°C, 25(13.6)°C, 44(24.6)°C, and 64(36.6)°C for DI water (FC-72), and heat fluxes up to 600 W/cm2. The CHF of subcooled flow boiling of the test fluids in the microchannels is measured parametrically. The two-phase pressure drop is also measured. Both CHF and the two-phase friction factor correlation for one-side heating with two other side-structured surface microchannels are proposed and developed in terms of the relevant parameters.  相似文献   

11.
This paper reports a study of heat transfer in the post-critical heat flux (post-CHF) regime under forced convective upflow conditions in a uniformly heated vertical tube of 12.7 mm internal diameter and 3 m length. Experiments were conducted with non-azeotropic ternary refrigerant mixture R-407C for reduced pressures ranging from 0.37 to 0.75, mass flux values from 1200 to 2000 kg/m2 s and heat flux from 50 to 80 kW/m2. Data shows a considerable effect of system pressure on the post-CHF heat transfer coefficient for specified mass and heat fluxes. The post-CHF heat transfer coefficients for R-407C are compared with three existing correlations which are found to over predict the current data. A modified correlation to represent the experimental data for R-407C is presented.  相似文献   

12.
CHF experiments in tubes and annulus cooled with HFC-134a have been performed. The HFC-134a and water CHF data have been compared by applying the Ahmad and the Katto modeling parameters. For the mass fluxes from 710 to 3500 kg m−2 s−1 in the tubes, the HFC-134a and water CHF data fall close to the same curve on the plane of the dimensionless CHF vs. the Ahmad and the Katto modeling parameters. For the mass fluxes below 600 kg m−2 s−1 in an annulus, the dimensionless CHFs as a function of the Ahmad and the Katto modeling parameters show a large difference between the HFC-134a and the water. The Katto and the Ahmad modeling parameters cannot be correlated with the dimensionless CHF data for HFC-134a and water on the same curve in the low mass flux and high quality conditions.  相似文献   

13.
In this paper, the experimental results of dryout during flow boiling in minichannels are reported and analysed. Experiments were carried out in vertical circular minichannels with internal diameters of 1.22 mm and 1.70 mm and a fixed heated length of 220 mm. R134a was used as working fluid. Mass flux was varied from 50 kg/m2 s to 600 kg/m2 s and experiments were performed at two different system pressures corresponding to saturation temperatures of 27 °C and 32 °C. Experimental results show that the dryout heat flux increases with mass flux and decreases with tube diameter while system pressure has no clear effect for the range of experimental conditions covered. Finally, the prediction capabilities of the well known critical heat flux (CHF) correlations are also tested.  相似文献   

14.
Flow boiling of refrigerant HFC-134a in a multi-microchannel copper cold plate evaporator is investigated. The heat transfer coefficient is measured locally for the entire range of vapor qualities starting from subcooled liquid to superheated vapor. The test piece contains 17 parallel, rectangular microchannels (0.762 mm wide) of hydraulic diameter 1.09 mm and aspect ratio 2.5. The design of the test facility is validated by a robust energy balance as well as a comparison of single-phase heat transfer coefficients with results from the literature. Results are presented for four different mass fluxes of 20.3, 40.5, 60.8, and 81.0 kg m?2 s?1, which correspond to refrigerant mass flow rates of 0.5–2.0 g s?1, and at three different pressures 400, 550 and 750 kPa corresponding to saturation temperatures of 8.9, 18.7, and 29 °C. The wall heat flux varies from 0 to 20 W/cm2 in the experiments. The heat transfer coefficient is found to vary significantly with refrigerant inlet quality and mass flow rate, but only slightly with saturation pressure for the range of values investigated. The peak heat transfer coefficient is observed for a vapor quality of approximately 20%.  相似文献   

15.
Flow boiling heat transfer experiments using R134a were carried out for jet impingement on smooth and enhanced surfaces. The enhanced surfaces were circular micro pin fins, hydrofoil micro pin fins, and square micro pin fins. The effects of saturation pressure, heat flux, Reynolds number, pin fin geometry, pin fin array configuration, and surface aging on flow boiling heat transfer characteristics were investigated. Flow boiling experiments were carried out for two different saturation pressures, 820 kPa and 1090 kPa. Four jet exit velocities ranging from 1.1–4.05 m/s were investigated. Flow boiling jet impingement on smooth surfaces was characterized by large temperature overshoots, exhibiting boiling hysteresis. Flow boiling jet impingement on micro pin fins displayed large heat transfer coefficients. Heat transfer coefficients as high as 150,000 W/m2 K were observed at a relatively low velocity of 2.2 m/s with the large (D = 125 μm) circular micro pin fins. Jet velocity, surface aging, and saturation pressure were found to have significant effects on the two-phase heat transfer characteristics. Subcooled nucleate boiling was found to be the dominant heat transfer mechanism.  相似文献   

16.
This paper presents experimentally determined heat transfer coefficients for condensation from a superheated vapor of CO2 and R410A. The superheated vapor was flowed through a smooth horizontal tube with 6.1 mm ID under almost uniform temperature cooling at reduced pressures from 0.55 to 0.95, heat fluxes from 3 to 20 kW m?2, and superheats from 0 to 40 K. When the tube wall temperature reaches the saturation point, the measured results show that the heat transfer coefficient gradually starts deviating from the values predicted by a correlation valid for single-phase gas cooling. This point identifies the start of condensation from the superheated vapor. The condensation starts earlier at higher heat fluxes because the tube wall temperature reaches the saturation point earlier. The heat transfer coefficient reaches a value predicted by correlations for condensation at a thermodynamic vapor quality of 1. The measured heat transfer coefficient of CO2 is roughly 20–70% higher than that of R410A at the same reduced pressures. This is mainly because the larger latent heat and liquid thermal conductivity of CO2, compared to that of R410A, increase the heat transfer coefficient.  相似文献   

17.
An experimental study is carried out to investigate the characteristics of the evaporation heat transfer for different fluids. Namely, pure refrigerants fluids (R22 and R134a), azeotropic and quasi-azeotropic mixtures (R404A, R410A, R507) and zeotropic mixtures (R407C and R417A).The test section is a smooth, horizontal, stainless steel tube (6 mm ID, 6 m length) uniformly heated by the Joule effect. The flow boiling characteristics of the refrigerant fluids are evaluated in 250 different operating conditions. Thus, a data-base of more than 2000 data points is produced.The experimental tests are carried out varying: (i) the refrigerant mass fluxes within the range 200–1100 kg/m2 s; (ii) the heat fluxes within the range 3.50–47.0 kW/m2; (iii) the evaporating pressures within the range 3.00–12.0 bar.In this study, the effect on measured heat transfer coefficient of vapour quality, mass flux, saturation temperature, imposed heat flux, thermo-physical properties are examined in detail.  相似文献   

18.
A spray cooling study was conducted to investigate the effect of enhanced surfaces on Critical Heat Flux (CHF). Test surfaces involved micro-scale indentations and protrusions, macro (mm) scale pyramidal pin fins, and multi-scale structured surfaces, combining macro and micro-scale structures, along with a smooth surface that served as reference. Tests were conducted in a closed loop system using a vapor atomized spray nozzle with ammonia as the working fluid. Nominal flow rates were 1.6 ml/cm2 s of liquid and 13.8 ml/cm2 s of vapor, resulting in a pressure drop of 48 kPa. Results indicated that the multi-scale structured surface helped increase maximum heat flux limit by 18% over the reference smooth surface, to 910 W/cm2 at nominal flow rate. During the additional CHF testing at higher flow rates, most heaters experienced failures before reaching CHF at heat fluxes above 950 W/cm2. However, some enhanced surfaces can achieve CHF values of up to ≈1100 W/cm2 with ≈67% spray cooling efficiency based on liquid usage. The results also shed some light on the current understanding of the spray cooling heat transfer mechanisms. Enhanced surfaces are found to be capable of retaining more liquid compared to a smooth surface, and efficiently spread the liquid film via capillary force within the structures. This important advantage delays the occurrence of dry patches at high heat fluxes, and leads to higher CHF. The present work demonstrated ammonia spray cooling as a unique alternative for challenging thermal management tasks that call for high heat flux removal while maintaining a low device temperature with a compact and efficient cooling scheme.  相似文献   

19.
This study explores the mechanism of flow boiling critical heat flux (CHF) in a 2.5 mm × 5 mm horizontal channel that is heated along its bottom 2.5 mm wall. Using FC-72 as working fluid, experiments were performed with mass velocities ranging from 185–1600 kg/m2s. A key objective of this study is to assess the influence of inlet vapor void on CHF. This influence is examined with the aid of high-speed video motion analysis of interfacial features at heat fluxes up to CHF as well as during the CHF transient. The flow is observed to enter the heated portion of the channel separated into two layers, with vapor residing above liquid. Just prior to CHF, a third vapor layer begins to develop at the leading edge of the heated wall beneath the liquid layer. Because of buoyancy effects and mixing between the three layers, the flow is less discernible in the downstream region of the heated wall, especially at high mass velocities. The observed behavior is used to construct a new separated three-layer model that facilitates the prediction of individual layer velocities and thicknesses. Combining the predictions of the new three-layer model with the interfacial lift-off CHF model provides good CHF predictions for all mass velocities, evidenced by a MAE of 11.63%.  相似文献   

20.
Three-dimensional simulations of condensation of refrigerant R134a in a horizontal minichannel are presented. Mass fluxes ranging from 50 kg m?2 s?1 up to 1000 kg m?2 s?1 are considered in a circular minichannel of 1 mm diameter, and uniform wall and vapour–liquid interface temperatures are imposed as boundary conditions. The Volume of Fluid (VOF) method is used to track the vapour–liquid interface; the effects of interfacial shear stress, gravity and surface tension are taken into account. The influence of turbulence in the condensate film is analysed and compared against the assumption of laminar condensate flow by employing different computational approaches and validating the results against experimental data. Under the assumption of laminar condensate flow, experimental heat transfer coefficient values at low mass fluxes can be predicted, but the computed heat transfer coefficient is found to be almost independent of mass flux and vapour quality. Only when turbulence in the condensate film is taken into account does the numerical model capture the influence of mass flux that is observed in the experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号