首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Heat transfer performance and pressure drop tests were performed on a circular tube with small pipe inserts. These inserts with different spacer lengths (S = 100, 142.9 and 200 mm) and arc radii (R = 5, 10 and 15 mm) were tested at Reynolds numbers between 4000 and 18,000. Tap water was used as working fluid. The use of pipe inserts allowed for a high heat transfer coefficient with relatively low flow resistance. The Nusselt number and friction factor increase with the decrease in spacer length. Optimal results were obtained for S = 100 mm (R = 10 mm). Heat transfer rates and friction factors were enhanced by 2.09–2.67 and 1.59–1.85 times, respectively, to those in the plain tube. Performance evaluation criterion (PEC) values were approximately 1.79–2.17. The Nusselt number and friction factor increase with the decrease in arc radius. Small pipe inserts with R = 5 mm and S = 100 mm show maximal heat transfer rates of 2.61–3.33 and friction factors of 1.6–1.8 times those of the empty tube. The PEC values were 2.23–2.7. Compared with other inserts, pipe inserts can transfer more heat for the same pumping power for their unique structure.  相似文献   

2.
Influence of perforated helical twisted-tapes (P-HTTs) on the heat transfer, friction loss and thermal performance characteristics under a uniform heat flux condition is reported. The P-HTTs were obtained by perforating typical helical twisted-tapes (HTTs) with a prospect to reduce the friction loss of fluid flow. The experiments were conducted using P-HTTs' three different diameter ratios (d/w) of 0.2, 0.4 and 0.6, and three different perforation pitch ratios (s/w) of 1, 1.5 and 2. The helical pitch ratio and twist ratio were fixed at P/D = 2 and y/w = 3. Tests were performed for Reynolds number between 6000 and 20,000. The experiments using the plain tube and the tubes with HTTs were also carried out for assessment. The experimental results reveal that the use of P-HTTs leads to the reduction of friction loss as compare to that of HTT. Heat transfer, friction loss and thermal performance factor increase as d/w decreases and s/w increases. For the present range, the maximum thermal performance factor of 1.28 is obtained by using the P-HTT with d/w = 0.2 and s/w = 2.0 at the Reynolds number of 6000. In addition, the empirical correlations for Nusselt number, friction factor and thermal performance factor give accurate predictions within ± 4%, ± 6% and ± 3%, respectively.  相似文献   

3.
Heat transfer results for mixed convection from a bottom heated open cavity subjected to an external flow are reported in this study for a wide range of the governing parameters (i.e., 1  Re  2000, 0  Gr  106) over cavities with various aspect ratios (A = 0.5, 1, 2 and 4). It has been found that the Reynolds number and Garshof number control the flow pattern and the occurrence of recirculating cells while the aspect ratio has a significant influence on the orientation of these cells. Heat transfer from the cavity base approaches that of natural convection at a low Reynolds number (i.e., the asymptotic natural convection regime) and approaches that of forced convection at a high Reynolds number (i.e., the asymptotic forced convection regime). In the mixed convection regime, the heat transfer rate is reduced and the flow may become unstable. A unique heat transfer correlation which covers all three convection regimes is also presented.  相似文献   

4.
Heat transfer, flow friction and thermal performance factor characteristics in a tube fitted with delta-winglet twisted tape, using water as working fluid are investigated experimentally. Influences of the oblique delta-winglet twisted tape (O-DWT) and straight delta-winglet twisted tape (S-DWT) arrangements are also described. The experiments are conducted using the tapes with three twist ratios (y/w = 3, 4 and 5) and three depth of wing cut ratios (DR = d/w = 0.11, 0.21 and 0.32) over a Reynolds number range of 3000–27,000 in a uniform wall heat flux tube. The obtained results show that mean Nusselt number and mean friction factor in the tube with the delta-winglet twisted tape increase with decreasing twisted ratio (y/w) and increasing depth of wing cut ratio (DR). It is also observed that the O-DWT is more effective turbulator giving higher heat transfer coefficient than the S-DWT. Over the range considered, Nusselt number, friction factor and thermal performance factor in a tube with the O-DWT are, respectively, 1.04–1.64, 1.09–1.95, and 1.05–1.13 times of those in the tube with typical twisted tape (TT). Empirical correlations for predicting Nusselt number and friction factor have been employed. The predicted data are within ±10% for Nusselt number and ±10% for friction factor.  相似文献   

5.
This paper utilizes the infrared thermography technique to investigate the thermal performance of plate-fin heat sinks under confined impinging jet conditions. The parameters in this study include the Reynolds number (Re), the impingement distance (Y/D), the width (W/L) and the height (H/L) of the fins, which cover the range Re = 5000–25,000, Y/D = 4–28, W/L = 0.08125–0.15625 and H/L = 0.375–0.625. The influences of these parameters on the thermal performance of the plate-fin heat sinks are discussed. The experimental results show that the thermal resistance of the heat sink apparently decreases as the Reynolds number increases; however, the decreasing rate of the thermal resistance declines with the increase of the Reynolds number. An appropriate impingement distance can decrease the thermal resistance effectively, and the optimal impingement distance is increased as the Reynolds number increases. Moreover, the influence of the impingement distance on the thermal resistance at high Reynolds numbers becomes less conspicuous because the magnitude of the thermal resistance decreases with the Reynolds number. An increase of the fin width reduces the thermal resistance initially. Nevertheless, the thermal resistance rises sharply when the fin width is larger than a certain value. Increasing the fin height can increase the heat transfer area which lowers the thermal resistance. Moreover, the influence of the fin height on the thermal resistance seems less obvious than that of the fin width. To sum up all experimental results, Reynolds number Re = 20,000, impingement distant Y/D = 16, fin width W/L = 0.1375, and fin height H/L = 0.625 are the suggested parameters in this study.  相似文献   

6.
A product of friction factor and Reynolds number (f · Re) of gaseous flow in a quasi-fully developed region of a micro-tube was obtained numerically and experimentally. Two-dimensional compressible momentum and energy equations were solved for a wide range of Reynolds number and Mach number for both ‘no heat conduction’ and isothermal flow conditions. It was found from numerical results that the product of friction factor and Reynolds number (f · Re) in a quasi-fully developed region is expressed as a function of Mach number. The tube cutting method was adopted to obtain the pressure variation along the tube. Fused silica tubes of nominal diameter of 150 μm, were used for experiments. The experimental results also indicate that (f · Re) is a function of Mach number.  相似文献   

7.
Turbulent convective heat transfer and friction factor characteristics of magnetic Fe3O4 nanofluid flowing through a uniformly heated horizontal circular tube with and without twisted tape inserts are estimated experimentally. Experiments are conducted in the particle volume concentration range of 0 < φ < 0.6%,twisted tape inserts of twist ratio in the range of 0 < H/D < 15and Reynolds number range of 3000 < Re < 22000. Heat transfer and friction factor enhancement of 0.6% volume concentration of Fe3O4 nanofluid in a plain tube with twisted tape insert of twist ratio H/D = 5 is 51.88% and 1.231 times compared to water flowing in a plain tube under same Reynolds number. Generalized regression equation is presented for the estimation of Nusselt number and friction factor for both water and Fe3O4 nanofluid in a plain tube and with twisted tape inserts under turbulent flow condition.  相似文献   

8.
It would be misleading to consider only cost aspect of the design of a heat exchanger. High maintenance costs increase total cost during the services life of heat exchanger. Therefore exergy analysis and energy saving are very important parameters in the heat exchanger design. In this study, the effects of surface geometries of three different type heat exchangers called as PHEflat (Flat plate heat exchanger), PHEcorrugated (Corrugated plate heat exchanger) and PHEasteriks (Asterisk plate heat exchanger) on heat transfer, friction factor and exergy loss were investigated experimentally. The experiments were carried out for a heat exchanger with single pass under condition of parallel and counter flow. In this study, experiments were conducted for laminar flow conditions. Reynolds number and Prandtl number were in the range of 50 ? Re ? 1000 and 3 ? Pr ? 7, respectively. Heat transfer, friction factor and exergy loss correlations were obtained according to the experimental results.  相似文献   

9.
This study experimentally focuses on the effects of a swirl generator on the thermal performance of a heat exchanging tube. The applied swirl generator is a helically twisted tube with a five-lobe cross section. As the main outcome, the thermal performance of the test tube equipped with the swirl generator are evaluated using the heat transfer rate in the form of Nusselt number and pressure drop in the form of friction factor. Water is used as the working fluid in the experiments performed for different Reynolds numbers from 6000 to 30,000. The different values of twist-angle (90  θ  360) and length (2  l  4) are investigated as the main geometrical parameters of the swirl generator. The results show that the swirl generator offers an enhancement up to 85% in the Nusselt number and an increase up to 52% in the friction factor. Therefore, the swirl generator presents a thermal performance up to 1.65. This study presents some correlations to predict the Nusselt number and the friction factor of the test tube equipped with the swirl generator.  相似文献   

10.
An experimental investigation of forced convection heat transfer in a rectangular channel (aspect ratio AR = 5) with angled rib turbulators, inclined at 45°, is presented. The angled ribs were deployed with parallel orientations on one or two surfaces of the channel. The convective fluid was air, and the Reynolds number varied from 9000 to 35,500. The ratio of rib height to hydraulic diameter (e/D) was 0.09, while four rib pitch-to-height ratios (p/e) were studied: 6.66, 10.0, 13.33, and 20.0. The aim of the work was to study the effect of rib spacing on the thermal performance of the ribbed channel. The maps of local heat transfer coefficient in the inter-rib regions have been reconstructed by liquid crystal thermography. The thermal performance of each ribbed channel is identified by the average Nusselt number and by the friction factor. Superior heat transfer performance was found at the optimal rib pitch-to-height ratio of 13.33 for the one-ribbed wall channel and at p/e = 6.66–10 for the two-ribbed wall channel.  相似文献   

11.
In this study heat transfer and fluid flow of Al2O3/water nanofluid in two dimensional parallel plate microchannel without and with micromixers have been investigated for nanoparticle volume fractions of ϕ = 0, ϕ = 4%  and base fluid Reynolds numbers of Ref = 5, 20, 50. One baffle on the bottom wall and another on the top wall work as a micromixer and heat transfer enhancement device. A single-phase finite difference FORTRAN code using Projection method has been written to solve governing equations with constant wall temperature boundary condition. The effect of various parameters such as nanoparticle volume fraction, base fluid Reynolds number, baffle distance, height and order of arrangement have been studied. Results showed that the presence of baffles and also increasing the Re number and nanoparticle volume fraction increase the local and averaged heat transfer and friction coefficients. Also, the effect of nanoparticle volume fraction on heat transfer coefficient is more than the friction coefficient in most of the cases. It was found that the main mechanism of enhancing heat transfer or mixing is the recirculation zones that are created behind the baffles. The size of these zones increases with Reynolds number and baffle height. The fluid pushing toward the wall by the opposed wall baffle and reattaching of separated flow are the locations of local maximum heat transfer and friction coefficients.  相似文献   

12.
The article presents an experimental investigation on thermal performance enhancement in a constant heat-fluxed square duct fitted with combined twisted-tape and winglet vortex generators. The experiments are carried out for the airflow rate through the tested square duct fitted with both the vortex generators for Reynolds number from 4000 to 30,000. The effect of the combined twisted tape and rectangular winglet inserts on heat transfer and pressure drop presented in terms of respective Nusselt number and friction factor is experimentally investigated. The characteristics of the combined twisted-tape and winglet include two twist ratios (Y = 4 and 5), three winglet- to duct-height ratios, (RB = 0.1, 0.15 and 0.2), four winglet-pitch to tape-width ratios, (RP = 2, 2.5, 4 and 5) and a single attack angle of winglet, α = 30°. The experimental results reveal that the Nusselt number and friction factor for the combined twisted-tape and V-winglet increase with increasing RB but decreasing RP. The inserted duct at RB = 0.2, RP = 2 and Y = 4 provides the highest heat transfer rate and friction factor but the one at RB = 0.1, RP = 2 and Y = 4 yields the highest thermal performance. The application of combined vortex-flow devices gives thermal performance around 17% higher than the twisted tape alone.  相似文献   

13.
Analysis of borehole thermal resistance is important for the standard sizing of ground heat exchanger (GHE). In this paper, a p-linear dimensionless average fluid temperature is proposed to estimate borehole thermal resistance. A p-linear dimensionless fluid temperature and p-linear dimensionless average fluid temperature are introduced, and the p-linear dimensionless fluid temperature is compared with theoretical dimensionless fluid temperature calculated by quasi-three-dimensional model for both single and double U-tubes. Results show that the p-linear dimensionless temperatures with parameters p  0 and p = ?1/2 are respectively in good agreement with the theoretical dimensionless fluid temperatures of single and double U-tubes. Therefore, the dimensionless logarithmic mean temperature for p  0 and the dimensionless geometric mean temperature for p = ?1/2 should respectively be adopted to reasonably estimate the thermal resistance of single and double U-tube boreholes.  相似文献   

14.
Experimental investigation was performed on the mixed convection heat transfer of thermal entrance region in an inclined rectangular duct for laminar and transition flow. Air flowed upwardly and downwardly with inclination angles from ?90° to 90°. The duct was made of duralumin plate and heated with uniform heat flux axially. The experiment was designed for determining the effects of inclination angles on the heat transfer coefficients and friction factors at seven orientations (θ = ? 90°, ?60°, ?30°, 0°, 30°, 60° and 90°), six Reynolds numbers (Re  420, 840, 1290, 1720, 2190 and 2630) within the range of Grashof numbers from 6.8 × 103 to 4.1 × 104. The optimum inclination angles that yielded the maximum heat transfer coefficients decreased from 30° to ?30° with the increase of Reynolds numbers from 420 to 1720. The heat transfer coefficients first increased with inclination angles up to a maximum value and then decreased. With further increase in Reynolds numbers, the heat transfer coefficients were nearly independent of inclination angles. The friction factors decreased with the increase of inclination angles from ?90° to 90° when Reynolds numbers ranged from 420 to 1290, and independent of inclination angles with higher Reynolds numbers.  相似文献   

15.
Heat transfer and overall visualized flow characteristics of confined, laminar milli-scale slot jets are investigated, as they impinge upon an isothermal flat target plate, with a fully-developed profile at the nozzle exit. The effects of Reynolds number Re and normalized nozzle-to-plate distance ratio H/B are investigated for Re = 120–200, H/B = 2–10, and B = 1.0 mm, with a nozzle aspect ratio of y/B = 50. Instantaneous visualizations of overall slot jet flow structure show unsteady lateral distortions of jet columns at experimental conditions corresponding to the presence of continuous sinusoidal oscillations. Also apparent in flow visualization sequences are smoke signatures associated with instantaneous vortex structures which form as secondary flows develop in fluid which, initially, is just adjacent to the jet column. For each Reynolds number considered, local stagnation region Nusselt numbers Nuo decrease dramatically as H/B increases to become greater than 7.2–13.2, as the Reynolds number is maintained constant at a value from 200 to 120, changes which occur just as continuous sinusoidal oscillation of the jet column begins to develop. The further development of continuous sinusoidal oscillating motion results in an approximate collapse of stagnation region Nusselt numbers measured at different Re and H/B values. When surface thermal boundary condition data are compared, the constant surface temperature data are generally higher than the constant surface heat flux data near the stagnation location, and lower at locations where x/B is greater than 1–2. The constant surface temperature data also show relatively low values with only very small changes with x/B, for x/B values which are greater than about 5.0. As such, the results illustrate the sensitivity of Nusselt numbers for laminar boundary layer and laminar slot jet flows to thermal boundary condition, as well as the restrictions on near-wall temperature gradients which result from a constant surface temperature thermal boundary condition.  相似文献   

16.
The turbulent heat transfer and flow resistance in an enhanced heat transfer tube, the DDIR tube, were studied experimentally and numerically. Water was used as the working fluid with Reynolds numbers between 15,000 and 60,000. The numerical simulations solved the three dimensional Reynolds-averaged Navier–Stokes equations with the standard k-ε model in the commercial CFD code, Fluent. The numerical results agree well with the experimental data, with the largest discrepancy of 10% for the Nusselt numbers and 15% for the friction factors. The heat transfer in the DDIR tube is enhanced 100  120% compared with a plain tube and the pressure drop is increased 170  250%. The heat transfer rate for the same pumping power is enhanced 30  50%. Visualization of the flow field shows that in addition to the front and rear vortices around the ribs, main vortices and induced vortices are also generated by the ribs in the DDIR tube. The rear vortex and the main vortex contribute much to the heat transfer enhancement in the DDIR tubes. Optimum DDIR tube parameters are proposed for heat transfer enhancement at the same pumping power.  相似文献   

17.
The continuity, momentum and energy equations describing the flow and heat transfer of power-law fluids over a semi-circular cylinder have been solved numerically in the two-dimensional steady flow regime. The influence of the Reynolds number (Re), Prandtl number (Pr) and power-law index (n) on the local and global flow and heat characteristics have been studied over wide ranges of conditions as follows: 0.01 ? Re ? 30, 1 ? Pr ? 100 and 0.2 ? n ? 1.8. The variation of drag coefficient and Nusselt number with the Reynolds number, Prandtl number and power-law index is shown over the aforementioned ranges of conditions. In addition, streamline and isotherm profiles along with the recirculation length and distribution of pressure coefficient and Nusselt number over the surface of the semi-circular cylinder are also presented to gain further insights into the nature of the underlying kinematics. The wake size (recirculation length) shows almost linear dependence on the Reynolds number (Re ? 1) for all values of power-law index studied herein. The drag values show the classical inverse variation with the Reynolds number, especially for shear-thinning fluids at low Reynolds numbers. The point of maximum pressure coefficient is found slightly displaced from the front stagnation point for highly shear-thinning fluids, whereas for shear-thickening and Newtonian fluids, it coincides with the front stagnation point. For fixed values of the Prandtl number and Reynolds number, the rate of heat transfer decreases with the gradual increase in power-law index; this effect is particularly striking at high Prandtl numbers due to the thinning of the thermal boundary layer. Conversely, as expected, shear-thinning behavior facilitates heat transfer and shear-thickening impedes it. The effect of power-law index on both momentum and heat-transfer characteristics is seen to be appreciable at low Reynolds numbers and it gradually diminishes with the increasing Reynolds number.  相似文献   

18.
This paper specifically considers the generation of steady streaming induced by g-jitter on double diffusion from a sphere immersed in a viscous and incompressible fluid. The governing equations of motion are first written in dimensionless forms and the resulting equations obtained after the introduction of the stream function are solved analytically and numerically. Analytical results using the matched asymptotic method are presented for the case when the Reynolds number, Re, is small (Re  1), while numerical results using the Keller-box method are given for (Re  1), or the boundary layer approximation. Both the cases of assisting and opposing thermal and concentration buoyancies are considered. Table and graphical results for the skin friction and heat and mass transfer from the sphere are presented and discussed for various parametric physical conditions. It is shown that for opposing buoyant forces the skin friction and heat and mass transfer rates follow complex trends depending on the buoyant ratio parameter, Prandtl and Schmidt numbers.  相似文献   

19.
This paper experimentally investigates the sintered porous heat sink for the cooling of the high-powered compact microprocessors for server applications. Heat sink cold plate consisted of rectangular channel with sintered porous copper insert of 40% porosity and 1.44 × 10?11 m2 permeability. Forced convection heat transfer and pressure drop through the porous structure were studied at Re ? 408 with water as the coolant medium. In the study, heat fluxes of up to 2.9 MW/m2 were successfully removed at the source with the coolant pressure drop of 34 kPa across the porous sample while maintaining the heater junction temperature below the permissible limit of 100 ± 5 °C for chipsets. The minimum value of 0.48 °C/W for cold plate thermal resistance (Rcp) was achieved at maximum flow rate of 4.2 cm3/s in the experiment. For the designed heat sink, different components of the cold plate thermal resistance (Rcp) from the thermal footprint of source to the coolant were identified and it was found that contact resistance at the interface of source and cold plate makes up 44% of Rcp and proved to be the main component. Convection resistance from heated channel wall with porous insert to coolant accounts for 37% of the Rcp. With forced convection of water at Re = 408 through porous copper media, maximum values of 20 kW/m2 K for heat transfer coefficient and 126 for Nusselt number were recorded. The measured effective thermal conductivity of the water saturated porous copper was as high as 32 W/m K that supported the superior heat augmentation characteristics of the copper–water based sintered porous heat sink. The present investigation helps to classify the sintered porous heat sink as a potential thermal management device for high-end microprocessors.  相似文献   

20.
An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000–38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular). The ratio of tube length-to-diameter is 33. Among the grooved tubes, heat transfer enhancement is obtained up to 63% for circular groove, 58% for trapezoidal groove and 47% for rectangular groove, in comparison with the smooth tube at the highest Reynolds number (Re = 38,000). Correlations of heat transfer and friction coefficient were obtained for different grooved tubes. In evaluation of thermal performance, it is seen that the grooved tubes are thermodynamically advantageous (Ns, a < 1) up to Re = 30,000 for circular and trapezoidal grooves and up to Re = 28,000 for rectangular grooves. It is observed that there is an optimum value of the entropy generation number at about Re = 17,000 for all investigated grooves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号