首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electron back-scattered diffraction together with scanning and transmission electron microscopy were used to study nucleation of microstructural fatigue cracks in reduced-activation ferritic–martensitic steel, EUROFER 97. Cylindrical specimens were cycled over different plastic-strain ranges in order to evaluate the evolution of the dislocation structure. Surface-damage evolution was studied in smooth notched specimens by an optical in situ system equipped with a high-resolution camera. In order to understand the crack-initiation mechanism, the dislocation microstructure that develops in the near-surface regions of the notch was compared with that of the bulk. The results demonstrate a strong influence of lath-martensite boundaries on fatigue-crack nucleation.  相似文献   

2.
In this study, the effect of deformation-induced-ferrite-transformation (DIFT) rolling on precipitation in Ti–Mo ferrite matrix micro-alloyed steel was investigated by comparing to rolling in austenite non-recrystallisation region. The precipitate volume fraction and precipitation-starting time-temperature (PTT) curves under two kinds of process were calculated by thermodynamic and kinetic calculation, and the effects of non-recrystallisation rolling and DIFT rolling on the contribution of strengthening mechanisms were quantitatively analysed. The results showed that comparing with rolling in the austenite non-recrystallisation region, carbides in the steel by DIFT rolling were finer and more uniform. Moreover, DIFT rolling could enhance fine grain strengthening and precipitation strengthening simultaneously, and the increments of fine grain and precipitation strengthening were 34 and 63.7?MPa, respectively.  相似文献   

3.
The effect of strain amplitude on fretting–fatigue behavior of steel wires in low cycle fatigue was investigated using a fretting–fatigue test rig which was capable of applying a constant normal contact load. The fretting regime was identified based on the shape of the hysteresis loop of tangential force versus displacement amplitude. The variations of the normalized tangential force with increasing cycle numbers and fretting–fatigue lives at different strain amplitudes were explored. The morphologies of fretting contact scars after fretting–fatigue tests were observed by scanning electron microscopy and optical microscopy to examine the failure mechanisms of steel wires. The acoustic emission technique was used to characterize the fretting–fatigue damage in the fretting–fatigue test. The results show that the fretting regimes are all located in mixed fretting regimes at different strain amplitudes. The increase in strain amplitude increases the normalized tangential force and decreases the fretting fatigue life. The abrasive wear, adhesive wear and fatigue wear are main wear mechanisms for all fretting–fatigue tests at different strain amplitudes. The accumulative total acoustic emission events during fretting–fatigue until fracture of the tensile steel wire decrease with increasing strain amplitude. An increase of the strain amplitude results in the accelerated crack nucleation and propagation and thereby the decreased life.  相似文献   

4.
Abstract

Tensile tests were performed on specimens in quenched and tempered and thermally aged conditions over a wide temperature range (300–873 K) to assess the occurrence of serrated flow, a manifestation of dynamic strain aging (DSA), in 9Cr–1Mo ferritic steel, with an emphasis on the influence of prior thermal aging on serrated yielding. The alloy exhibited jerky/serrated flow in the load–elongation curves at intermediate temperatures. Types A, B, and C serrations were observed, depending on the test temperature and applied strain rate. The apparent activation energy of 83 kJ mol-1 measured for serrated flow suggests that diffusion of an interstitial solute such as carbon is responsible for dynamic strain aging in 9Cr–1Mo steel. Prior thermal aging at 793 K for 5000 h and at 873 K for 1000 and 5000 h resulted in a significant decrease in the height of serrations, i.e. the magnitude of the stress drop, as well as an increase in the critical strain for the onset of serrations. Both of these observations indicate reduced propensity to DSA as a result of increased precipitate sinks as well as a reduced carbon concentration in solid solution owing to an increased density of carbides in the thermally aged conditions. Reduced propensity to DSA resulted in a significant reduction in the strength values at intermediate temperatures.  相似文献   

5.
Abstract

Cleavage fracture of a 26Cr–1Mo ferritic stainless steel has been studied using fatigue precracked specimens. The parameters determined were fracture toughness, cleavage fracture strength, and effective surface energy of ferrite. The results have been compared with earlier results on notched specimens.

MST/185  相似文献   

6.
Near-threshold fatigue crack growth behavior in 25Cr2NiMo1V steel with different microstructures was investigated by utilizing the load-shedding technique at ambient temperature. Crack surface morphology was observed by SEM with special emphases on the incidence of intergranular fracture and the influence on crack growth rates. Results show that the maximum intergranularity occurs at the ΔK corresponding to the cyclic plastic zone size being equivalent to the prior austenitic grain size. Two types of crack growth mode were observed in the near-threshold regime, i.e., the crystallographic mode of crack growth and the striation mode of crack advance. The incidence of faceted fracture was mainly rationalized by comparing the cyclic plastic zone size with the grain size. It is concluded that, in the crystallographic mode, lower crack growth rates in samples with higher heat treatment temperatures are caused by a greater degree of roughness-induced crack closure (RICC), faceted fracture induced crack closure (FFICC), and oxide-induced crack closure (OICC). The faceted fracture shows negligible influence on crack growth rates when cracks grow in a striation controlled mode.  相似文献   

7.
Abstract

The 10CrMoNbV Manet II cast has been selected as the reference ferritic–martensitic steel in the framework of the European Fusion Technology Programme. Charpy impact tests have been carried out in the ductile to brittle transition temperature range of this steel, such that a dynamic quasi-equilibrium has been achieved in the process zones of investigated specimens before brittle failure. This type of testing enables the evaluation of dynamic Weibull moduli and, consequently, dynamic Weibull master curves. Thus, Weibull parameters have been calculated for normal size and subsize Charpy impact specimens. The evaluated, geometry dependent dynamic Weibull master curves facilitate computation of the failure probability densities of the investigated steels as functions of scaled critical crack sizes or scaled initial defect sizes.  相似文献   

8.
Fatigue tests were conducted on round-bar specimens to understand the fatigue behavior of precipitate-strengthened Cu–6Ni–1.5Si alloy. Aging at 500 °C for 0.5 h produced δ-Ni2Si precipitates in the matrix, homogeneously and heterogeneously precipitated δ-Ni2Si particles, and a precipitate-free zone around the grain boundaries. The cracks were initiated at the grain boundaries, followed by growth along the crystallographic slip planes in the adjacent grains. Crack propagation from the crack origin along the grain boundaries was occasionally observed. The physical background of fatigue damage is discussed in light of the role of microstructure on the behavior of fatigue cracks.  相似文献   

9.
Dissimilar joining of reduced activation ferritic–martensitic steel to AISI 316LN austenitic stainless steel is carried out by brazing in inert atmosphere at three different temperatures, i.e. 980, 1020 and 1040°C using AWS BNi-2 powder. The braze joints are characterised by scanning electron microscopy, X-ray diffraction, micro-hardness measurement. With increasing brazing temperature from 980 to 1040°C, the approximate width of the braze layer decreases from 350 to 80?µm and hardness reduces from 600 to 410?VHN. However, not much difference is found in microstructure and hardness between braze joints produced at 1020 and 1040°C. With increasing brazing temperature, morphology and volume fraction of intermetallics formed in the braze layer change, thereby reducing the hardness variation between the braze layer and the base metal.  相似文献   

10.
The present paper presents the results of an extensive electron microscopy investigation on the decomposition modes of high temperature austenite in 9Cr–W–V–Ta reduced activation ferritic–martensitic steels. Although the displacive martensitic transformation is predominant on austenitisation, low volume fraction of Fe rich M3C or M23C6 precipitates formed, when the tungsten content exceeded 1 wt-%. The compositional inhomogeneity introduced in the austenite by the nature, chemistry and kinetics of dissolution of the pre-existing carbides is dependent on the steel composition and austenitisation conditions. The extent of repartitioning of tungsten between M23C6 and ferrite largely influences the kinetics of austenite and martensite transformation, for the same austenitisation conditions. Supporting evidence from calorimetry analysis is also presented.  相似文献   

11.
Axially push–pull fatigue tests of a low-strength Cr–Ni–Mo–V steel welded joint were conducted up to very high cycle fatigue regime at room temperature and 370 °C. The S–N curve at room temperature shows a duplex shape, while the S–N curve at 370 °C is continuously decreasing with lower fatigue strength. The welds at 370 °C undergoes dynamic strain ageing and has an enhanced load–defects interaction, leading to equal distribution of failures among different parts of the welds. The Z parameter model, with micro-defect location incorporated, having sound physical representation, is life-controlling of the welds at high temperature.  相似文献   

12.
New form of J-hook connectors and ultra-lightweight cementitious material have been developed by the authors in the previous research to produce steel–concrete–steel sandwich slim decks which have superior performance to resist blast and impact loads. This paper investigates the shear strength behavior of the J-hook connectors embedded in ultra-lightweight cement composite core and compares the behavioral differences with those in normal strength concrete. A total of 102 push-out tests were carried out on standard test specimens with varying parameters including concrete types (normal weight, lightweight and ultra-lightweight), concrete strengths, and types of J-hook connectors. Design guides are proposed to predict the shear strength and load–slip behavior of the J-hook connectors embedded in ultra-lightweight cement composite. The predicted results are compared with the test results together with those predicted by modern codes which were primarily developed for headed shear studs. Through the comparisons and verifications, it is observed that the proposed formulae offers better and more reliable predictions on shear strength as well as load–slip behaviors compared with the available methods in the literature.  相似文献   

13.
In situ ultrasonic fatigue with a cyclic frequency of 20 kHz was employed in an environmental scanning electron microscope (ESEM) to characterize fatigue crack formation and growth in the near alpha titanium alloy Ti–6242S. The role of environment on small fatigue crack initiation and growth was investigated in vacuum and in variable pressures of saturated water vapor, as well as in laboratory air. Small crack growth behavior from cracks initiated at FIB-produced micro-notches indicated a significant environmental dependence, with fatigue crack growth rates increasing with increasing partial pressures of water vapor. Environment also influenced crack initiation lifetime in that cracks initiated earlier in laboratory air than in vacuum or saturated water vapor environments. Transgranular, crystallographic crack growth was observed in each environment, with the crack path in primary α grains producing facets parallel to basal planes when crack size was small. Small crack growth resistance had a marked sensitivity to microstructural features, such as α/α grain boundaries with high misorientation and α/α + β boundaries. These initial investigations demonstrate the usefulness of in situ ultrasonic fatigue instrumentation (UF-SEM) as a new tool for the characterization of environmental and microstructural influences on very high cycle fatigue (VHCF) behavior.  相似文献   

14.
This article examines the self-healing repair of delamination damage in mendable carbon fibre–epoxy laminates under static or fatigue interlaminar loading. The healing of delamination cracks in laminates containing particles or fibres of the mendable thermoplastic poly[ethylene-co-(methacrylic acid)] (EMAA) was investigated. The results showed that the formation of large-scale bridging zone of EMAA ligaments along the crack upon healing yielded a large increase (~300%) in the static mode I interlaminar fracture toughness, exceeding the requirement of full restoration. The mendable laminates retained high healing efficiency with multiple repair cycles because of the capability of EMAA to reform the bridging zone under static delamination crack growth conditions. Under fatigue loading, healing by the EMAA was found to restore the mode I fatigue crack growth resistance, with the rates of growth being slightly less than that pertinent to the unmodified laminate. The EMAA bridging zone, which generated high toughness under static loading conditions, does not develop under fatigue loading because of rapid fatigue failure of the crack bridging ligaments. Similar to the multiple healing capability of EMAA under static loading, multiple healing of delamination fatigue cracks is confirmed, with the fatigue crack growth rates remaining approximately unchanged. This study shows that EMAA was capable of full recovery of fatigue crack growth resistance and superior healing efficiency for static loading.  相似文献   

15.
The crack growth behavior in an ultrafine-grained (UFG) interstitial-free (IF) steel processed by equal channel angular pressing (ECAP) was investigated utilizing miniaturized compact-tension specimens with different microstructural characteristics. The current results demonstrate that both the ECAP processing route and the direction of crack growth with respect to the extrusion direction dictate the crack growth behavior in UFG IF steel. Specifically, the highest crack growth rates and the lowest threshold values were observed for the lowest grain size. Moreover, an unusual deviation from the expected direction of crack expansion was observed, where the deviation depended on the processing route and direction of crack growth. This deviation is attributed to the presence of elongated structures in the microstructure, which were mainly detectable in the UFG IF steel following a small number of pressings, and to a smaller extent in the optimized microstructures. Specifically, these elongated structures formed parallel to the material’s plastic flow during ECAP processing and moved the crack away from the expected direction of growth due to the high stress concentration zones they created along with the process-induced damages.  相似文献   

16.
The boiler tubes and pipes in the present day coal fired power plants are designed against damage arising from the interaction of creep and fatigue. The present investigation reports the microstructural evolution in P92 grade martensitic steel during pure fatigue and hold time fatigue tests conducted at 600 °C. Fatigue life significantly dropped for hold time fatigue tests in comparison with pure fatigue tests. The drop in fatigue life was more for hold time fatigue tests conducted with compressive hold. Grain boundary oxidation and cracking was identified as the major cause for the decrease in fatigue life under compressive hold. Annihilation of dislocations and pinning of dislocations by MX precipitates were observed to be the microstructural changes during cyclic deformation.  相似文献   

17.
In this work,the effect of microstructure features on the high-cycle fatigue behavior of Ti-7Mo-3Nb-3Cr-3Al(Ti-7333)alloy is investigated.Fatigue tests were carried out at room temperature in lab air atmosphere using a sinusoidal wave at a frequency of 120 Hz and a stress ratio of 0.1.Results show that the fatigue strength is closely related to the microstructure features,especially the αp percentage.The Ti-7333 alloy with a lower αp percentage exhibits a higher scatter in fatigue data.The bimodal fatigue behavior and the duality of the S-N curve are reported in the Ti-7333 alloy with relatively lower αp percentage.Crack initiation region shows the compound αp/β facets.Faceted αp particles show crystallographic orientation and morphology dependence characteristics.Crack-initiation was accompanied by faceting process across elongated αp particles or multiple adjacent αp particles.These particles generally oriented for basal slip result in near basal facets.Fatigue crack can also initiate at elongated αp particle well oriented for prismaticslip.The β facet is in close correspondence to{110}or{112}plane with high Schmid factor.Based on the fracture observation and FIB-CS analysis,three classes of fatigue-critical microstructural configurations are deduced.A phenomenological model for the formation of αp facet in the bimodal microstructure is proposed.This work provides an insight into the fatigue damage process of the α precipitate strengthened metastable β titanium alloys.  相似文献   

18.
Axially fully-reversed fatigue test of a low strength Cr–Ni–Mo–V steel welded joint was conducted up to the very high cycle fatigue regime under the frequency of 110 Hz and 20 kHz. The SN curve shows a duplex shape at low frequency while decreases continuously at high frequency. Sites of crack initiation and fracture of the welds depend on stress level and loading frequency, hence leading to changed fatigue strength. In addition, frequency effect varies among different parts of the welded joint and fatigue lifetime.  相似文献   

19.
The effects of cooling manner on the microstructure and mechanical properties of 27Cr–4Mo–2Ni ferritic stainless steel were investigated. It was found that the Laves phase (except for the TiN and Nb(C, N) particles) was distributed both in the grains and at the grain boundaries in the furnace-cooled specimen. The water-quenched and air-cooled specimens showed only TiN and Nb(C, N) particles. After annealing at 1100°C, the furnace-cooled specimen showed significant grain coarsening as compared to the water-quenched and air-cooled specimens. Furthermore, the Vickers hardness of the furnace-cooled specimen increased, while the total elongation decreased because of the formation of the Laves phase. The precipitation of the Laves phase resulted in the brittle fracture of the specimen during the tensile test.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号