首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Flow boiling of the perfluorinated dielectric fluid FC-77 in a silicon microchannel heat sink is investigated. The heat sink contains 60 parallel microchannels each of 100 μm width and 389 μm depth. Twenty-five evenly distributed temperature sensors in the substrate yield local heat transfer coefficients. The pressure drop across the channels is also measured. Experiments are conducted at five flow rates through the heat sink in the range of 20–80 ml/min with the inlet subcooling held at 26 K in all the tests. At each flow rate, the uniform heat input to the substrate is increased in steps so that the fluid experiences flow regimes from single-phase liquid flow to the occurrence of critical heat flux (CHF). In the upstream region of the channels, the flow develops from single-phase liquid flow at low heat fluxes to pulsating two-phase flow at high heat fluxes during flow instability that commences at a threshold heat flux in the range of 30.5–62.3 W/cm2 depending on the flow rate. In the downstream region, progressive flow patterns from bubbly flow, slug flow, elongated bubbles or annular flow, alternating wispy-annular and churn flow, and wall dryout at highest heat fluxes are observed. As a result, the heat transfer coefficients in the downstream region experience substantial variations over the entire heat flux range, based on which five distinct boiling regimes are identified. In contrast, the heat transfer coefficient midway along the channels remains relatively constant over the heat flux range tested. Due to changes in flow patterns during flow instability, the heat transfer is enhanced both in the downstream region (prior to extended wall dryout) and in the upstream region. A previous study by the authors found no effect of instabilities during flow boiling in a heat sink with larger microchannels (each 300 μm wide and 389 μm deep); it appears therefore that the effect of instabilities on heat transfer is amplified in smaller-sized channels. While CHF increases with increasing flow rate, the pressure drop across the channels has only a minimal dependence on flow rate once boiling is initiated in the microchannels, and varies almost linearly with increasing heat flux.  相似文献   

2.
Experiments were conducted to investigate flow boiling in 200 μm × 253 μm parallel microchannels with structured reentrant cavities. Flow morphologies, boiling inceptions, heat transfer coefficients, and critical heat fluxes were obtained and studied for mass velocities ranging from G = 83 kg/m2 s to G = 303 kg/m2 s and heat fluxes up to 643 W/cm2. Comparisons of the performance of the enhanced and plain-wall microchannels were performed. The microchannels with reentrant cavities were shown to promote nucleation of bubbles and to support significantly better reproducibility and uniformity of bubble generation. The structured surface was also shown to significantly reduce the boiling inception and to enhance the critical heat flux.  相似文献   

3.
This paper investigates flow boiling of water in microchannels with a hydraulic diameter of 227 μm possessing 7.5 μm wide reentrant cavities on the sidewalls. Average two-phase heat transfer coefficients and CHF conditions have been obtained over a range of effective heat fluxes (28–445 W/cm2) and mass velocities (41–302 kg/m2 s). High Boiling number and Reynolds number have been found to promote convective boiling, while Nucleate Boiling dominated at low Reynolds number and Boiling number. A criterion for the transition between nucleate and convective boiling has been provided. Existing correlations did not provide satisfactory agreement with the heat transfer coefficient but did predict CHF conditions well.  相似文献   

4.
A simultaneous visualization and measurement study have been carried out to investigate flow boiling instabilities of water in microchannels at various heat fluxes and mass fluxes. Two separate flow boiling experiments were conducted in eight parallel silicon microchannels (with flow interaction from neighboring channels at headers) and in a single microchannel (without flow interaction), respectively. These microchannels, at a length of 30 mm, had an identical trapezoidal cross-section with a hydraulic diameter of 186 μm. At a given heat flux and inlet water temperature, it was found that stable and unstable flow boiling regimes existed, depending on the mass flux. A flow boiling map, in terms of heat flux vs mass flux, showing stable flow boiling regime and unstable flow boiling regime is presented for parallel microchannels as well as for a single microchannel, respectively, at an inlet water temperature of 35 °C. In the stable flow boiling regime, isolated bubbles were generated and were pushed away by the incoming subcooled liquid. Two unstable flow boiling regimes, with long-period oscillation (more than 1 s) and short-period oscillation (less than 0.1 s) in temperature and pressure, were identified. The former was due to the expansion of vapor bubble from downstream while the latter was owing to the flow pattern transition from annular to mist flow. A comparison of results of flow boiling in parallel microchannels and in a single microchannel shows that flow interaction effects from neighboring channels at the headers are significant.  相似文献   

5.
Flow boiling in arrays of parallel microchannels is investigated using a silicon test piece with imbedded discrete heat sources and integrated local temperature sensors. The microchannels considered range in width from 102 μm to 997 μm, with the channel depth being nominally 400 μm in each case. Each test piece has a footprint of 1.27 cm by 1.27 cm with parallel microchannels diced into one surface. Twenty five microsensors integrated into the microchannel heat sinks allow for accurate local temperature measurements over the entire test piece. The experiments are conducted with deionized water which enters the channels in a purely liquid state. Results are presented in terms of temperatures and pressure drop as a function of imposed heat flux. The experimental results allow a critical assessment of the applicability of existing models and correlations in predicting the heat transfer rates and pressure drops in microchannel arrays, and lead to the development of models for predicting the two-phase pressure drop and saturated boiling heat transfer coefficient.  相似文献   

6.
Experiments on flow boiling heat transfer in high aspect ratio micro-channels with FC-72 were carried out. Three channels with different hydraulic diameters (571, 762 and 1454 μm) and aspect ratios (20, 20 and 10) were selected. The tested mass fluxes were 11.2, 22.4 and 44.8 kg m?2 s?1 and heat fluxes ranging from 0–18.6 kW m?2. In the present study, boiling curves with obvious temperature overshoots are presented. Average heat transfer coefficient and local heat transfer coefficient along stream-wise direction are measured as a function of heat flux and vapour quality respectively. Slug-annular flow and annular flow are the main flow regimes. Convective boiling is found to be the dominant heat transfer mechanism. Local heat transfer coefficient increases with decreasing hydraulic diameter. Moreover, the effect of hydraulic diameter is more significant when mass flux is higher. The unique channel geometry is considered as the decisive reason of the flow regimes as well as heat transfer mechanisms.  相似文献   

7.
An experiment is carried out here to investigate flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip flush-mounted in the bottom of a horizontal rectangular channel. Besides, three different micro-structures of the chip surface are examined, namely, the smooth, pin-finned 200 and pin-finned 100 surfaces. The pin-finned 200 and 100 surfaces, respectively, contain micro-pin-fins of size 200 μm × 200 μm × 70 μm (width × length × height) and 100 μm × 100 μm × 70 μm. The pitch of the fins is equal to the fin width for both surfaces. The effects of the FC-72 mass flux, imposed heat flux, and surface micro-structures of the silicon chip on the FC-72 saturated flow boiling characteristics are examined in detail. The experimental data show that an increase in the FC-72 mass flux causes a delay in the boiling incipience. However, the flow boiling heat transfer coefficient is not affected by the coolant mass flux. But adding the micro-pin-fin structures to the chip surfaces can effectively enhance the single-phase convection and flow boiling heat transfer. Moreover, the mean bubble departure diameter and active nucleation site density are reduced for a rise in the FC-72 mass flux. A higher coolant mass flux results in a higher mean bubble departure frequency. Furthermore, larger bubble departure diameter, higher bubble departure frequency, and higher active nucleation site density are observed at a higher imposed heat flux. We also note that adding the micro-pin-fins to the chips decrease the bubble departure diameter and increase the bubble departure frequency. However, the departing bubbles are larger for the pin-finned 100 surface than the pin-finned 200 surface but the bubble departure frequency exhibits an opposite trend. Finally, empirical equations to correlate the present data for the FC-72 single-phase liquid convection and saturated flow boiling heat transfer coefficients and for the bubble characteristics are provided.  相似文献   

8.
The effects of pressure on flow boiling instabilities in microchannels were experimentally studied. Experiments were conducted using water in 223 μm hydraulic diameter microchannels with mass fluxes ranging from 86 to 520 kg/m2 s and pressures ranging from 50 to 205 kPa. Onset of flow oscillation, critical heat flux (CHF) conditions, local transient temperature measurements along with flow boiling visualization were obtained and studied. System pressure was found to significantly affect flow instabilities. For high pressure, it was observed that boiling instabilities were significantly delayed and CHF was extended to high mass qualities. Local temperature measurements also revealed lower magnitudes and higher frequencies of oscillations at high system pressures.  相似文献   

9.
Experiments are conducted here to investigate subcooled flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip flush-mounted on the bottom of a horizontal rectangular channel. In the experiments the mass flux is varied from 287 to 431 kg/m2 s, coolant inlet subcooling from 2.3 to 4.3 °C, and imposed heat flux from 1 to 10 W/cm2. Besides, the silicon chips contain three different geometries of micro-structures, namely, the smooth, pin-finned 200 and pin-finned 100 surfaces. The pin-finned 200 and 100 surfaces, respectively, contain micro-pin-fins of size 200 μm × 200 μm × 70 μm (width × length × height) and 100 μm × 100 μm × 70 μm. The measured data show that the subcooled flow boiling heat transfer coefficient is reduced at increasing inlet liquid subcooling but is little affected by the coolant mass flux. Besides, adding the micro-pin-fin structures to the chip surface can effectively raise the single-phase convection and flow boiling heat transfer coefficients. Moreover, the mean bubble departure diameter and active nucleation site density are reduced for rises in the FC-72 mass flux and inlet liquid subcooling. Increasing coolant mass flux or reducing inlet liquid subcooling results in a higher mean bubble departure frequency. Furthermore, larger bubble departure diameter, higher bubble departure frequency, and higher active nucleation site density are observed as the imposed heat flux is increased. Finally, empirical correlations for the present data for the heat transfer and bubble characteristics in the FC-72 subcooled flow boiling are proposed.  相似文献   

10.
A simultaneous visualization and measurement study has been carried out to investigate subcooled flow boiling and microbubble emission boiling (MEB) phenomena of deionized water in a partially heated Pyrex glass microchannel, having a hydraulic diameter of 155 μm, which was integrated with a Platinum microheater. Effects of mass flux, inlet water subcooling and surface condition of the microheater on subcooled flow boiling in microchannels are investigated. It is found that MEB occurred at high inlet subcoolings and at high heat fluxes, where vapor bubbles collapsed into microbubbles after contacting with the surrounding highly subcooled liquid. In the fully-developed MEB regime where the entire microheater was covered by MEB, the mass flux, the inlet water subcooling and the heater surface condition have only small effects on the boiling curves. The occurrence of MEB in microchannel can remove a large amount of heat flux, as high as 14.41 MW/m2 at a mass flux of 883.8 kg/m2 s, with only a moderate rise in wall temperature. Therefore, MEB is a very promising method for cooling of microelectronic chips. Heat transfer in the fully-developed MEB in the microchannel is presented, which is compared with existing subcooled flow boiling heat transfer correlations for macrochannels.  相似文献   

11.
Flow boiling heat transfer characteristics of water are experimentally studied in a circular minichannel with an inner diameter of 1500 μm. The fluid flows upwards and the test section, made of the nickel alloy Inconel 600, is directly electrically heated. Thus, the evaporation takes place under the defined boundary condition of constant heat flux. Mass fluxes between 50 and 100 kg/(m2 s) and heat fluxes from 10 to 115 kW/m2 at an inlet pressure of 3 bar are examined.Infrared thermography is applied to measure the outer wall temperatures of the minichannel. This experimental method permits the identification of different boiling regions, boiling mechanisms and the determination of local heat transfer coefficients. Measurements are carried out in single-phase flow, subcooled and saturated boiling regions. The experimental heat transfer coefficients in the region of saturated boiling are compared with correlations available in literature and with a physically founded model developed for convective boiling.  相似文献   

12.
Critical heat flux (CHF) and pressure drop of subcooled flow boiling are measured for a microchannel heat sink containing 75 parallel 100 μm × 200 μm structured surface channels. The heated surface is made of a Cu metal sheet with/without 2 μm thickness diamond film. Tests and measurements are conducted with de-ionized water, de-ionized water +1 vol.% MCNT additive solution, and FC-72 fluids over a mass velocity range of 820–1600 kg/m2 s, with inlet temperatures of 15(8.6)°C, 25(13.6)°C, 44(24.6)°C, and 64(36.6)°C for DI water (FC-72), and heat fluxes up to 600 W/cm2. The CHF of subcooled flow boiling of the test fluids in the microchannels is measured parametrically. The two-phase pressure drop is also measured. Both CHF and the two-phase friction factor correlation for one-side heating with two other side-structured surface microchannels are proposed and developed in terms of the relevant parameters.  相似文献   

13.
A visualization study of pool boiling at atmospheric pressure from top-covered enhanced structures was conducted for a dielectric fluorocarbon liquid (PF 5060). The single layer enhanced structures studied were fabricated in copper and quartz, had an overall size of 10 mm × 10 mm and were 1 mm thick. The parameters investigated in this study were the heat flux (in the range of 1–11 W/cm2 for copper and 1–4 W/cm2 for quartz) and the width of the microchannels (65–360 μm). A high-speed camera (maximum frame rate 1000 f/s at full resolution) with attached magnifying lens allowed precise observation of the evaporation process in the bottom and top channels. The heat transfer performance of the enhanced structures was found to depend weakly on the channel width. The internal evaporation has a significant contribution to the total heat dissipation, especially at low heat fluxes.  相似文献   

14.
This research article investigates the effect that hydrodynamic cavitation has on heat transfer. The fluid medium is refrigerant R-123 flowing through 227 μm hydraulic diameter microchannels. The cavitation is instigated by the inlet orifice. Adiabatic tests were conducted to study the two-phase cavitating flow morphologies and hydrodynamic characteristics of the flow. Diabatic experiments were performed resulting in surface temperatures under heat fluxes up to 213 W/cm2 and mass velocities from 622 kg/m2 s to 1368 kg/m2 s. Results were compared to non-cavitating flows at the same mass velocities. It was found that the cavitating flows can significantly enhance the heat transfer. The heat transfer coefficient of the cavitating flows was larger than the non-cavitating flows by as much as 84%. Single-phase and two-phase heat transfer coefficients have been elucidated and employed to deduce the heat transfer mechanism prevailing under boiling conditions with and without the presence of cavitation.  相似文献   

15.
This article is the first in a three part study on flow boiling of refrigerants R236fa and R245fa in a silicon multi-microchannel heat sink. The heat sink was composed of 67 parallel channels, which are 223 μm wide, 680 μm high and 20 mm long with 80 μm thick fins separating the channels. The base heat flux was varied from 3.6 to 221 W/cm2, the mass velocity from 281 to 1501 kg/m2 s and the exit vapour quality from 2% to 75%. The working pressure and saturation temperature were set nominally at 273 kPa and 25 °C, respectively. The present database includes 1217 local heat transfer coefficient measurements, for which three different heat transfer trends were identified, but in most cases the heat transfer coefficient increased with heat flux and was almost independent of vapour quality and mass velocity. Importantly, it was found for apparently the first time that the heat transfer coefficient as a function of vapour quality reaches a maximum at very high heat fluxes and then decreases with further increase of heat flux.  相似文献   

16.
The subcooled flow boiling heat transfer characteristics of a kerosene kind hydrocarbon fuel were investigated in an electrically heated horizontal tube with an inner diameter of 1.0 mm, in the range of heat flux: 20–1500 kW/m2, fluid temperature: 25–400 °C, mass flux: 1260–2160 kg/m2 s, and pressure: 0.25–2.5 MPa. It was proposed that nucleate boiling heat transfer mechanism is dominant, as the heat transfer performance is dependent on heat flux imposed on the channel, rather than the fuel flow rate. It was found that the wall temperatures along the test section kept constant during the fully developed subcooled boiling (FDSB) of the non-azeotropic hydrocarbon fuel. After the onset of nucleate boiling, the temperature differences between inner wall and bulk fluid begin to decrease with the increase of heat flux. Experimental results show that the complicated boiling heat transfer behavior of hydrocarbon fuel is profoundly affected by the pressure and heat flux, especially by fuel subcooling. A correlation of heat transfer coefficients varying with heat fluxes and fuel subcooling was curve fitted. Excellent agreement is obtained between the predicted values and the experimental data.  相似文献   

17.
The rapid increase of heat flux in high performance electronic devices has necessitated the development of high capacity thermal management techniques that can support extremely high heat transfer rates. Flow boiling in microgap is very promising for this purpose due to its high heat transfer rate and ease of fabrication. However, the effects of microgap dimension on heat transfer and pressure drop characteristics along with flow visualization have not been investigated extensively. This paper focuses on flow boiling experiments of deionized water in silicon microgap heat sink for ten different microgap dimensions from a range of 80 μm–1000 μm to determine the most effective and efficient range of microgap dimensions based on heat transfer and pressure drop performance. High speed flow visualization is conducted simultaneously along with experiments to illustrate the bubble characteristics in the boiling flow in microgap. The results of this study show that confinement in flow boiling occurs for microgap sizes 500 μm and below and confined slug/annular flow is the main dominant regime whereas physical confinement does not occur for microgap sizes 700 μm and above and bubbly flow is the dominant flow regime. The microgap is ineffective below 100 μm as partial dryout strikes very early and the wall temperature is much higher for a fixed heat flux as microgap size increases above 500 μm. In addition, results show that pressure drop and pressure fluctuation decrease with the increases of gap size whereas wall temperature and wall temperature fluctuation increase with the increases of gap size. A strong dependence of heat transfer coefficient on microgap sizes is observed for microgap sizes 500 μm and below. However, the heat transfer coefficient is independent of microgap size for microgap sizes 700 μm and above.  相似文献   

18.
A microchannel test section comprised of parallel square microchannels with a 25 × 25 μm and 50 × 50 μm cross section was manufactured. Boiling of perfluorinated dielectric fluid FC-72 and water in microchannels was studied. Troublesome occurrences associated with flow boiling in microchannels were reduced or eliminated with inlet/outlet restrictors, inlet/outlet manifolds and potential nucleation cavities incorporated in the array of microchannels. The gradual reduction of channel cross section in the manifolds ensured a uniform distribution of the working fluid among the microchannels. The flow restrictors provided a higher upstream pressure drop in comparison with the downstream pressure drop which favors vapor flow in the downstream direction and consequentially suppresses the vapor backflow present in flow boiling. The superheat of the microchannel wall necessary for the onset of boiling was decreased significantly with the incorporation of properly sized artificial cavities. Experimental results confirmed the benefits of the etched features, as there was (i) an even working fluid distribution (ii) without dominating backflows of vapor (iii) at a low temperature of the onset of boiling. Bubble growths as well as other events in the microchannels were visualized with a high-speed imaging system which captured images at over 87,000 frames per second. Results exhibit boiling hysteresis dependence of the working fluid and its mass flux through the microchannels. The temperature of the onset of boiling is highly dependent on the working fluid, microchannel size and its roughness.  相似文献   

19.
This experimental study aims to investigate the heat transfer characteristics of single-phase turbulent flow of R-134a refrigerant in a rectangular multi-micro channel heat sink having 27 channels where each channel has a hydraulic diameter of 421 μm. Experimental results were obtained for inlet temperatures ranging from 24 to 33 °C, mass fluxes from 1485 to 2784 kg m 2 s 1 and wall heat fluxes from 3 to 24 kW m 2. The results indicate that the heat transfer coefficients are found to be higher at lower inlet temperatures than those at higher ones. In addition, when equal amount of heat supplied to the heat sink, the heat transfer coefficients increase with increasing the mass flux of refrigerant. They were also compared with 12 well-known correlations and it was seen that 4 of 12 were in good agreement with each other with the average deviation < 10%. The findings demonstrate that well-known correlations in fundamental sources can be used to predict the heat transfer coefficient of R-134a during its single phase flow in a multiport microchannel heat sink under turbulent regime.  相似文献   

20.
Boiling flow process plays a very important role to affect the heat transfer in a microchannel. Different boiling flow modes have been found in the past which leads to different oscillations in temperatures and pressures. However, a very important issue, i.e. the surface wettability effects on the boiling flow modes, has never been discussed. The current experiments fabricated three different microchannels with identical sizes at 105 × 1000 × 30000 μm but at different wettability. The microchannels were made by plasma etching a trench on a silicon wafer. The surface made by the plasma etch process is hydrophilic and has a contact angle of 36° when measured by dipping a water droplet on the surface. The surface can be made hydrophobic by coating a thin layer of low surface energy material and has a contact angle of 103° after the coating. In addition, a vapor–liquid–solid growth process was adopted to grow nanowire arrays on the wafer so that the surface becomes super-hydrophilic with a contact angle close to 0°. Different boiling flow patterns on a surface with different wettability were found, which leads to large difference in temperature oscillations. Periodic oscillation in temperatures was not found in both the hydrophobic and the super-hydrophilic surface. During the experiments, the heat flux imposed on the wall varies from 230 to 354.9 kW/m2 and the flow of mass flux into the channel from 50 to 583 kg/m2s. Detailed flow regimes in terms of heat flux versus mass flux are also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号