首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research in the past eight years has established the ability of polymer composites made with sufficient electrical conductivity to be suitable as shields against electromagnetic interference (EMI). A number of conductive fillers have been used to produce such composites. These include carbon black, carbon fibers, metal fibers, metal flakes, and metal-coated glass fibers. Each filler offers its own set of advantages and disadvantages. An important aspect of developing polymeric composites for EMI shielding applications is measuring their shielding ability in areliable, easy-to-use test facility. Once a reliable test has been developed, basic data relating the bulk conductivity (or surface conductivity of coatings) can be generaated. The objective of this article is to discuss the relative utility of the different types of fillers commonly used, present an analysis of the utility of different testing approaches, and show data correlating volume resistivity with shielding effectiveness.  相似文献   

2.
Multi-walled carbon nanotube (MWCNT)/portland cement(PC) composites have been fabricated to evaluate their electromagnetic interference (EMI) shielding effectiveness (SE). The results show that they can be used for the shielding of EMI in the microwave range. The incorporation of 15 wt.% MWCNTs in the PC matrix produces a SE more than 27 dB in X-band (8.2–12.4 GHz), and this SE is found to be dominated by absorption. Furthermore, the structural analysis, surface morphology and surface interaction of MWCNTs with PC matrix have been explored using XRD, SEM and X-ray photoelectron spectroscopy technique.  相似文献   

3.
The effect of different toughening strategies on the mechanical properties of multiwalled carbon nanotube/polycarbonate composite (PC/MWNT) for electromagnetic interference shielding was analyzed from the mechanical and fracture tests using linear elastic fracture mechanics. The effect of processing (injection and compression molding) and manufacturing (annealing) conditions in the mechanical properties and electrical conductivity has been studied. The classic electromagnetic theory predicts a shielding effectiveness around 40 dB for nanocomposites with 5 wt% of MWNT in the frequency range studied. These values make these compounds to be very interesting materials for potential applications as electronic housings. Therefore, a combination of cyclic form of polybutylene terephthalate addition and annealing strategies let to optimize flexural parameters and improve the flexural modulus of PC composites. The rheology results showed that the dynamic moduli and the viscosity grew with increasing MWNT content. A significant change in frequency dependence of the moduli was observed, with respect to pure PC, which indicates a transition from a liquid‐like to a solid‐like behavior. Finally, the morphological study proves that the composites display different toughening mechanisms as function of carbon nanotube quantity. This fact could explain the different fracture behaviors of materials. In summary, it has been proved that it is possible to obtain PC/MWNT nanocomposites with relatively high conductivity, minimizing the loss of mechanical properties, using processing techniques easily scalable at industrial level. POLYM. COMPOS., 34:1938–1949, 2013. © 2013 Society of Plastics Engineers  相似文献   

4.
High reliability and high-performance electromagnetic interference (EMI) shielding polymeric composite was fabricated by introducing carbon nanotube films (CNTf) into an epoxy (EP) matrix as mechanical and EMI shielding reinforcement simultaneously. According to the computed tomography (CT) detection recorded by a high-speed camera, CNTf exhibited excellent mechanical behavior and good energy absorption. While being introduced into laminated EP composite, the CNTf enhanced both the mechanical performance and EMI shielding performance. The damage mechanism of CNTf/EP was studied by CT detection of the impact process, indicating that the CNTf absorbed the impact energy by improving the delamination resistance. Additionally, the multilayered CNTf can trap and attenuate the entered electromagnetic microwaves by repeated adsorption, reflection, and scattering in the composite, resulting in excellent EMI shielding performance. Consequently, the energy absorption and the total shielding effectiveness of the CNTf/EP reached to 4.58 × 10−3 J and 52.31 dB, respectively. Therefore, we demonstrated that the CNTf was an ideal functional reinforcement for mechanically strong and high-performance EMI shielding polymeric composites and the CNTf reinforced EP composite is promising in practical EMI-shielding applications.  相似文献   

5.
Carbon nanotube reinforced carbon fiber/pyrolytic carbon composites were fabricated by precursor infiltration and pyrolysis method and their electromagnetic interference shielding effectiveness (EMI SE) was investigated over the frequency range of 8.2–12.4 GHz (X-band). Carbon nanotubes (CNTs) were in situ formed through catalyzing hydrocarbon gases evaporating out of phenolic resin with nano-scaled Ni particles. The content of CNTs increased with the increase of Ni loadings (0.00, 0.50, 0.75 and 1.25 wt.%) in phenolic resin. Thermal gravimetrical analysis results showed that the carbon yield of phenolic resin increased with the addition of Ni catalyst. With the formation of CNTs, the EMI SE increased from 28.3 to 75.2 dB in X-band. The composite containing 5.0 wt.% CNTs showed an SE higher than 70 dB in the whole X-band.  相似文献   

6.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

7.
A lightweight conducting polymer composite was prepared by the incorporation of conducting polypyrrole in the pores of a host polymer to form a conductive network. The inclusion of polypyrrole in a porous cross-linked polystyrene host polymer, prepared by the concentrated emulsion polymerization method, was carried out by imbibing the host polymer with a pyrrole solution (or oxidant solution), partially drying the saturated host polymer, and imbibing it again with the oxidant solution (or pyrrole solution) for 2 h. The conductivity of the polymer composite is as high as 0.5 S/cm and the shielding effectiveness of the composite reaches 26 dB in the frequency range from 1.0 to 2.0 GHz.  相似文献   

8.
Single‐walled carbon nanotube (SWNT)/poly(methyl methacrylate) (PMMA) composites were prepared using coagulation method. The electrical conductivity and the electromagnetic interference (EMI) shielding of SWNT/PMMA composites over the X‐band (8–12 GHz) and the microwave (200–2000 MHz) frequency range have been investigated. The electrical conductivity of composites increases with SWNT loading by 13 orders of magnitude, from 10?15 to 10?2 Ω?1 cm?1 with a percolation threshold of about 3 wt% SWNTs. The effect of the sample thickness on the shielding effectiveness has been studied, and correlated to the electrical conductivity of composites. The data suggest that SWNT/PMMA composites containing higher SWNT loading (above 10 wt%) be useful for EMI shielding and those with lower SWNT loading be useful for electrostatic charge dissipation. The dominant shielding mechanism of SWNT/PMMA composites was also discussed. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

9.
Zunfeng Liu 《Carbon》2007,45(4):821-827
The electromagnetic interference (EMI) shielding of well dispersed single-walled carbon nanotube (SWCNT)/polyurethane composites was studied and the results show that they can be used as effective and lightweight shielding materials. The EMI shielding of the composite shows a reflection-dominant mechanism, while a shift from reflection to absorption was observed with increased SWCNT loading and frequency. This is explained using EMI shielding theory and the intrinsic properties of the components.  相似文献   

10.
Multi-walled carbon nanotube (MWCNT)/polystyrene (PS) composites were injection molded into a mold equipped with three different cavities. A high alignment of MWCNTs in PS was achieved by applying high shear force to the melt. The effects of gate and runner designs and processing conditions, i.e., mold temperature, melt temperature, injection/holding pressure and injection velocity, on the volume resistivity of the composites were investigated in both the thickness and in-flow directions. The experiments showed that volume resistivity could be varied up to 7 orders of magnitude by changing the processing conditions in the injection molded samples. The electromagnetic interference shielding effectiveness (EMI SE) of the molded composites was studied by considering the alignment of the MWCNTs. The EMI SE decreased with an increase in the alignment of the injection-molded MWCNTs in the PS matrix. This study shows that mold designs and processing conditions significantly influence the electrical conductivity and shielding behavior of injection molded CNT-filled composites.  相似文献   

11.
Graphene nanoplatelets (GNPs) were successfully incorporated into silicon carbide (SiC) ceramic matrix in a self-aligned pattern and the obtained materials displayed extremely high value of shielding effectiveness (SE) over 40?dB by adding only 3?wt.% GNPs, which was the highest SE value in all SiC-based composites reported in literature up to now. It was found that the texture distribution of GNPs was crucial to achieve the high electromagnetic interference shielding performance of SiC/GNPs composites, which can contribute to the significant improvement of both absorption and reflection. The improved absorption originated from the formation of network of mini capacitors comprised of self-aligned GNPs and multiple reflections. The improvement of reflection was attributed to the high electrical conductivity of the composite due to the introduction of GNPs. These results indicate that SiC/GNPs composites can be used as high-performance ceramic-based EMI shielding materials.  相似文献   

12.
13.
Polyaniline (PANI) deposited polyacrylate (PA) powders were prepared by chemical polymerization of aniline in hydrochloric acid with dispersed PA powders. The powders, after dedoped with ammonia water, were re‐doped with camphorsulfonic acid (CSA) to render them conductive, and conductive PANI/polyacrylate composite coatings (PANI/PA) were prepared by bead milling of these CSA‐doped PANI (PANI–CSA) deposited polyacrylate powders (PANI–CSA/PA). It was found that aniline was polymerized preferentially at the surfaces of the powders and PANI deposited powders were obtained as indicated by the scanning electronic microscopy images. The amount of deposited PANI increased with the aniline/polyacrylate weight ratio in feed, and no isolated PANI particles was found. UV–Vis and Fourier transformed infrared spectra indicated that the PANI layer was physically adhered to the PA powders, and not chemically. Conductivities of the PANI–CSA/PA powders and the PANI/PA coatings increased with the amounts of PANI–CSA and a percolation threshold of 0.2 and 0.3 was demonstrated, respectively. Electromagnetic interference shielding measurements showed that the shielding effectiveness of the PANI/PA coatings increased with PANI–CSA loadings, and shielding effectiveness as high as 60 dB can be achieved with the coatings. POLYM. COMPOS., 27:627–632, 2006. © 2006 Society of Plastics Engineers  相似文献   

14.
15.
《Ceramics International》2019,45(10):12672-12676
Macroscopic parallel aligned non-woven carbon fibers were incorporated into Al2O3 composites in this study to evaluate the contribution of multiple reflections to the total electric magnetic interference (EMI) shielding. Results indicate that parallel aligned non-woven carbon fiber layers contribute significantly to the total EMI shielding effectiveness (SET) of Al2O3 composites by largely enhancing the EMI absorption, and seven parallel aligned thin non-woven carbon fiber layers finally make the almost microwave-transparent Al2O3 an excellent EMI shielding material with an EMI SET as high as 29–32 dB in the X-band frequency range. The volume fraction of carbon fibers in Al2O3 composites with seven carbon fiber layers is calculated to be only 0.5%, and therefore the EMI SE enhancement efficiency by parallel aligned large non-woven carbon fiber layers is much higher than other highly conducting nano fillers. It validates the significance of multiple reflections in achieving high EMI shielding properties in ceramic composites and provides an instructive approach to design efficient EMI shielding ceramic composites.  相似文献   

16.
Three types of single-walled carbon nanotube (SWCNT) homogeneous epoxy composites with different SWCNT loadings (0.01-15%) have been evaluated for electromagnetic interference (EMI) shielding effectiveness (SE) in the X-band range (8.2-12.4 GHz). The effect of the SWCNT structure including both the SWCNT aspect ratio and wall integrity, on the EMI SE have been studied and are found to correlate well with the conductivity and percolation results for these composites. The composites show very low conductivity thresholds (e.g. 0.062%). A 20-30 dB EMI SE has been obtained in the X-band range for 15% SWCNT loading, indicating that the composites can be used as effective lightweight EMI shielding materials. Furthermore, their EMI performance to radio frequencies is found to correspond well with their permittivity data.  相似文献   

17.
周坤豪  胡小芳 《化工进展》2012,31(6):1258-1262,1273
对碳纳米管填充聚合物基电磁屏蔽复合材料的研究进展进行了综述。在阐述研究电磁屏蔽材料必要性的基础上,介绍了复合材料的电磁屏蔽机理,重点论述了碳纳米管填充量、长径比及管径、屏蔽体的厚度、复合材料的加工方式等对复合材料电磁屏蔽性能的影响。最后对碳纳米管填充聚合物基复合电磁屏蔽材料的研究进行了展望,指出低成本填料与碳纳米管协同作用、可提高碳纳米管分散性的制备工艺的研究以及复合材料电磁屏蔽机理的研究等为未来的研究方向。  相似文献   

18.
Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region.  相似文献   

19.
A conductive plastic was compounded in a twin screw extruder by incorporating conductive carbon fiber (CF) into an acrylonitrile-butadience-styrene (ABS) copolymer. The effects of various processing parameters prior to injection molding were investigated; then, the electromagnetic interference shielding effectiveness (EMI SE), fiber length, processability, and mechanical properties of the composite were studied. Results showed that the EMI SE of the composite increased as the final fiber length increased. The longer final fiber was produced by feeding fibers into the ABS melt at 240°C and 60 rpm. A more conductive network was formed by adding lubricants to the composite to reduce fiber damage and increase fiber dispersion. The increase of the fiber content affected processability. When the fiber content was higher than 40 phr (parts per hundred resin) in the composite, the average fiber length shortened. This study shows that better shielding can be obtained by adding a fiber at a rate higher than 30 phr. The best shielding obtained is about 30 decibels (dB).  相似文献   

20.
The topic of electromagnetic interference (EMI) has been reviewed briefly to outline the need for conductive composite materials. The characteristics of a conductive filler which lead to high efficiency at small filler concentrations were examined qualitatively. One of these characteristics, aspect ratio, was examined in detail by using nickel-coated micas as a means of molding composites containing ultra-thin layers of nickel. Using this technique, as little as 1.5 volume percent nickel can provide adequate shielding for 90 percent of current commercial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号