首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fuel》2005,84(12-13):1543-1549
A blend of 20% (v/v) ethanol/methyl soyate was prepared and added to diesel fuel as an oxygenated additive at volume percent levels of 15 and 20% (denoted as BE15 and BE20). We also prepared a blend containing 20% methyl soyate in diesel fuel (denoted as B20). The fuel blends that did not have any other additive were stable for up to 3 months. Engine performance and emission characteristics of the three different fuels in a diesel engine were investigated and compared with the base diesel fuel. Observations showed that particulate matter (PM) emission decreased with increasing oxygenate content in the fuels but nitrogen oxides (NOx) emissions increased. The diesel engine fueled by BE20 emitted significantly less PM and a lower Bosch smoke number but the highest NOx among the fuel blends tested. All the oxygenate fuels produced moderately lower CO emissions relative to diesel fuel. The B20 blend emitted less total hydrocarbon (THC) emissions compared with base diesel fuel. This was opposite to the fuel blends containing ethanol (BE15, BE20), which produced much higher THC emission.  相似文献   

2.
In this paper fuels, based on various DME to diesel ratios are investigated. Physical and chemical properties of DME and diesel display mutual solubility at any ratio. The vapor pressure of DME/diesel blends is lower than that of pure DME at the same temperatures and it decreases with an increase of diesel mass fraction in blends, which is beneficial to the elimination of vapor lock in the fuel supply system on CI engines. Performance, emission and other features of three kinds of DME/diesel blend fuels and diesels are evaluated in a four-cylinder test engine. By taking relative advantages of DME and diesel, the DME/diesel blends could achieve satisfactory properties in lubricity and atomization, which contributed to improvements in spray and combustion characteristics. Simultaneously, smoke emission could be reduced significantly with a little penalty on CO and HC emissions for DME/diesel blended engine at high loads, in comparison to diesel engine. NOx emissions of the engine powered by DME/diesel blends are decreased somewhat. Moreover, the power output would be improved a little and NOx emission could be reduced further if the fuel supply advance angle is retarded appropriately.  相似文献   

3.
O?uzhan Do?an 《Fuel》2011,90(7):2467-9430
Nitrogen oxides and smoke emissions are the most significant emissions for the diesel engines. Especially, fuels containing high-level oxygen content can have potential to reduce smoke emissions significantly. The aim of the present study is to evaluate the influence of n-butanol/diesel fuel blends (as an oxygenation additive for the diesel fuel) on engine performance and exhaust emissions in a small diesel engine. For this aim five-test fuels, B5 (contains 5% n-butanol and 95% diesel fuel in volume basis), B10, B15, B20 and neat diesel fuel, were prepared to test in a diesel engine. Tests were performed in a single cylinder, four stroke, unmodified, and naturally aspirated DI high speed diesel engine at constant engine speed (2600 rpm) and four different engine loads by using five-test fuels. The experimental test results showed that smoke opacity, nitrogen oxides, and carbon monoxide emissions reduced while hydrocarbon emissions increased with the increasing n-butanol content in the fuel blends. In addition, there is an increase in the brake specific fuel consumption and in the brake thermal efficiency with increasing n-butanol content in fuel blends. Also, exhaust gas temperature decreased with increasing n-butanol content in the fuel blends.  相似文献   

4.
Diesel soot from reference diesel fuel and oxygenated fuel under idle and load engine conditions was investigated with X-ray scattering and X-ray carbon K-edge absorption spectroscopy. Up to five characteristic size ranges were found. Idle soot was generally found to have larger primary particles and aggregates but smaller crystallites, than load soot. Load soot has a higher degree of crystallinity than idle soot. Adding oxygenates to diesel fuel enhanced differences in the characteristics of diesel soot, or even reversed them. Aromaticity of idle soot from oxygenated diesel fuel was significantly larger than from the corresponding load soot. Carbon near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was applied to gather information about the presence of relative amounts of carbon double bonds (CC, CO) and carbon single bonds (C-H, C-OH, COOH). Using scanning X-ray transmission microspectroscopy (STXM), the relative amounts of these carbon bond states were shown to vary spatially over distances approximately 50 to 100 nm. The results from the X-ray techniques are supported by thermo-gravimetry analysis and high-resolution transmission electron microscopy.  相似文献   

5.
6.
An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8% and 16% (by vol.) n-butanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, water-cooled, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors’ laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two butanol/diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), is a very promising bio-fuel for diesel engines. The differing physical and chemical properties of n-butanol against those for the diesel fuel, aided by sample cylinder pressure and heat release rate diagrams, are used to interpret the observed engine behavior.  相似文献   

7.
An experimental study is conducted to evaluate the effects of using blends of diesel fuel with either ethanol in proportions of 5% and 10% or n-butanol in 8% and 16% (by vol.), on the combustion behavior of a fully-instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), ‘Mercedes-Benz’ engine installed at the authors’ laboratory. Combustion chamber and fuel injection pressure diagrams are obtained at two speeds and three loads using a developed, high-speed, data acquisition and processing system. A heat release analysis of the experimentally obtained cylinder pressure diagrams is developed and used. Plots of histories in the combustion chamber of the heat release rate and temperatures reveal some interesting features, which shed light into the combustion mechanism when using these promising bio-fuels that can be derived from biomass (bio-ethanol and bio-butanol). The key results are that with the use of these bio-fuels blends, fuel injection pressure diagrams are very slightly displaced (delayed), ignition delay is increased, maximum cylinder pressures are slightly reduced and cylinder temperatures are reduced during the first part of combustion. These results, combined with the differing physical and chemical properties of the ethanol and n-butanol against those for the diesel fuel, which constitutes the baseline fuel, aid the correct interpretation of the observed engine behavior performance- and emissions-wise.  相似文献   

8.
Aviation fuel JP-5 and biodiesel on a diesel engine   总被引:1,自引:0,他引:1  
Naval aviation turbine fuel, JP-5, has been accepted as alternative to JP-8 in the frame of the Single Fuel Policy. This has resulted in some ongoing research on JP-5 fuel for its application as a naval single fuel. The necessity to cope with the environmental problems identified in the process of implementing the Single Fuel Policy as well as the strict requirements of modern diesel engines has lead to the need of improved single fuel quality. The development of biomass derived substitutes for diesel, such as biodiesel, is a possible attractive solution. The present paper is an effort to evaluate JP-5 along with diesel and biodiesel for use in a diesel engine. These fuels were used alone and in various mixture fractions in a single cylinder stationary diesel engine in order to evaluate their performance under defined operating conditions of the engine. JP-5 reduced both the NOx and particulate matter emissions as compared to the reference fuel case. Biodiesel significantly lowered particulate emissions, but slightly increased NOx emissions and fuel consumption. Fuel sulfur content has an undesired effect on smoke opacity. Biodiesel increased the fuel consumption when added to petroleum fuels and the increase was larger at high engine loads. Diesel and JP-5 showed similar fuel consumption, with diesel consumption increasing at high engine loads. Ternary blends showed similar behavior. The blends with lower biodiesel content showed lower volumetric fuel consumption.  相似文献   

9.
10.
Frank Lujaji  Akos Bereczky 《Fuel》2011,90(2):505-510
Emission problems associated with the use of fossil fuels have led to numerous research projects on the use of renewable fuels. The aim of this study is to evaluate the effects of blends containing croton mogalocarpus oil (CRO)-Butanol (BU) alcohol-diesel (D2) on engine performance, combustion, and emission characteristics. Samples investigated were 15%CRO-5%BU-80%D2, 10%CRO-10%BU-80%D2, and diesel fuel (D2) as a baseline. The density, viscosity, cetane number CN, and contents of carbon, hydrogen, and oxygen were measured according to ASTM standards. A four cylinder turbocharged direct injection (TDI) diesel engine was used for the tests. It was observed that brake specific energy consumption (BSEC) of blends was found to be high when compared with that of D2 fuel. Butanol containing blends show peak cylinder pressure and heat release rate comparable to that of D2 on higher engine loads. Carbon dioxide (CO2) and smoke emissions of the BU blends were lower in comparison to D2 fuel.  相似文献   

11.
《Fuel》2006,85(5-6):778-782
An investigation of the effect of DME or ethanol on fuel consumption is conducted in a four-stroke, one-cylinder, direct-injection diesel engine. DME or ethanol is first heated to pyrolyze and then the resultant product gas is introduced into air intake. Brake Specific Fuel Consumption (BSFC) can be reduced a lot, when emulsified fuel (diesel fuel emulsified with water) is fueled to diesel engine and DME is heated to about 1000 K before its being introduced into air intake. Results show that BSFC can be decreased by about 10% and diesel fuel consumption can be decreased by 18%. High saving rate of BSFC up to 10% is also acquired using ethanol instead of DME. To achieve high saving rate of BSFC, the heating temperature of about 1000 K is needed for DME operation, while the diesel engine exhaust temperature of about 750 K is enough for pyrolyzing ethanol. Hydrogen produced in DME or ethanol pyrolysis is considered as the main reason for the excellent fuel saving. The technique adopted in the present work is extremely easy to utilize, and may be firstly adopted on diesel engines for power plants, trains, ships, etc.  相似文献   

12.
Yi Ren  Haiyan Miao  Yage Di  Deming Jiang  Ke Zeng  Bing Liu  Xibin Wang 《Fuel》2008,87(12):2691-2697
Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends were investigated. The results show that there exist the different behaviors in the combustion between the diesel-diglyme blends and the other five diesel-oxygenate blends as the diglyme has the higher cetane number than that of diesel fuel while the other five oxygenates have the lower cetane number than that of diesel fuel. The smoke concentration decreases regardless of the types of oxygenate additives, and the smoke decreases with the increase of the oxygen mass fraction in the blends without increasing the NOx and engine thermal efficiency. The reduction of smoke is strongly related to the oxygen-content of blends. CO and HC concentrations decrease with the increase of oxygen mass fraction in the blends. Unlike conventional diesel engines fueled with pure diesel fuel, engine operating on the diesel-oxygenate blends presents a flat NOx/Smoke tradeoff curve versus oxygen mass fraction.  相似文献   

13.
Depletion of fossils fuels and environmental degradation have prompted researchers throughout the world to search for a suitable alternative fuel for diesel engine. One such step is to utilize renewable fuels in diesel engines by partial or total replacement of diesel in dual fuel mode. In this study, acetylene gas has been considered as an alternative fuel for compression ignition engine, which has excellent combustion properties.Investigation has been carried out on a single cylinder, air cooled, direct injection (DI), compression ignition engine designed to develop the rated power output of 4.4 kW at 1500 rpm under variable load conditions, run on dual fuel mode with diesel as injected primary fuel and acetylene inducted as secondary gaseous fuel at various flow rates. Acetylene aspiration resulted in lower thermal efficiency. Smoke, HC and CO emissions reduced, when compared with baseline diesel operation. With acetylene induction, due to high combustion rates, NOx emission significantly increased. Peak pressure and maximum rate of pressure rise also increased in the dual fuel mode of operation due to higher flame speed. It is concluded that induction of acetylene can significantly reduce smoke, CO and HC emissions with a small penalty on efficiency.  相似文献   

14.
The possibility of improving air-fuel mixture ignition by optimal contouring of the wall on which the jet is incident is confirmed. It is also shown that a decrease in the limiting temperature and in the ignition delay leads, in turn, to an increase in fuel-combustion efficiency, which ensures faster stabilization of engine operation after starting. Under diesel-engine nominal rating conditions, secondary mixing no longer has a profound effect on ignition and combustion processes. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Fizika Goreniya i Vzryva, Vol. 33, No. 1, pp. 33–42, January–February, 1997  相似文献   

15.
《Fuel》2007,86(12-13):1772-1780
In this study, wasted cooking oil from restaurants was used to produce neat (pure) biodiesel through transesterification, and this converted biodiesel was then used to prepare biodiesel/diesel blends. The goal of this study was to compare the trace formation from the exhaust tail gas of a diesel engine when operated using the different fuel type: neat biodiesel, biodiesel/diesel blends, and normal diesel fuels. B20 produced the lowest CO concentration for all engine speeds. B50 produced higher CO2 than other fuels for all engine speeds, except at 2000 rpm where B20 gave the highest. The biodiesel and biodiesel/diesel blend fuels produced higher NOx for various engine speeds as expected. SO2 formation not only showed an increasing trend with increased engine speed but also showed an increasing trend as the percentage of diesel increased in the fuels. Among the collected data, the PM concentrations from B100 engines were higher than from other fuelled engines for the tested engine speed and most biodiesel-contained fuels produced higher PM than the pure diesel fuel did. Overall, we may conclude that B20 and B50 are the optimum fuel blends. The species of trace formation in the biodiesel-contained fuelled engine exhaust were mainly CnH2n+2, DEP, and DPS. For the B100, B80, B50, and D fuelled engines, C15H32 was the dominant species for all engine speeds, while squalene (C30H50) was the dominant for B20. DEP was only observed in the B100, B80, and B50 fuelled engines in this study. The D fuelled engine showed a higher DPS production for engine speeds higher than 1200 rpm.  相似文献   

16.
P.K. Devan  N.V. Mahalakshmi 《Fuel》2009,88(5):861-867
Experimental tests have been carried out to evaluate the performance, emission and combustion characteristics of a diesel engine using Neat poon oil and its blends of 20%, 40%, and 60%, and standard diesel fuel separately. The common problems posed when using vegetable oil in a compression ignition engine are poor atomization; carbon deposits, ring sticking, etc. This is because of the high viscosity and low volatility of vegetable oil. When blended with diesel, poon oil presented lower viscosity, improved volatility, better combustion and less carbon deposit. It was found that there was a reduction in NOx emission for Neat poon oil and its diesel blends along with a marginal increase in HC and CO emissions. Brake thermal efficiency was slightly lower for Neat poon oil and its diesel blends. From the combustion analysis, it was found that poon oil-diesel blends performed better than Neat poon oil.  相似文献   

17.
Methanol-to-diesel (MTD) means a synthetic diesel fuel, its raw material is methanol. And it is a liquid alcohol ether mixture with appropriate amount of additives, which can be blended with diesel fuel at various levels. It was synthesized by methanol with 1,2-epoxypropane and epoxyethane using modified calcined Mg/Al hydroxides as catalysts. The test and study on the physical properties of MTD and the fuel consumption and emissions of diesel engine using the mixed MTD and diesel fuel have been performed. The results indicates that there was no significant difference in the power values of diesel and the blend fuels while fuel consumption increasing around 14%, and of much lower emissions of exhaust. When using the diesel fuel mixed with 20-30% of MTD. The conclusion is that MTD is a cheap and clean low power loss additive fuel for diesel engines.  相似文献   

18.
The specific gravity of biodiesel and its blends with diesel fuel   总被引:6,自引:0,他引:6  
The specific gravities of biodiesel and 75, 50, and 20% blends with No. 1 and No. 2 diesel fuels were measured as a function of temperature from the onset of crystallization to 100°C. The results indicate that biodiesel and its blends demonstrate temperature-dependent behavior that is qualitively similar to the diesel fuels. The temperature dependence of the specific gravity for biodiesel and its blends was compared with the ASTM D 1250-80 procedure for the temperature correction of hydrocarbon fuels, and the procedure was found to provide accurate corrections. A blending equation was developed that allows the specific gravity of blends to be calculated from the specific gravities of the biodiesel and diesel fuels.  相似文献   

19.
The kinematic viscosity of biodiesel and its blends with diesel fuel   总被引:1,自引:0,他引:1  
As the use of biodiesel becomes more wide-spread, engine manufacturers have expressed concern about biodiesel’s higher viscosity. In particular, they are concerned that biodiesel may exhibit different viscosity-temperature characteristics that could result in higher fuel injection pressures at low engine operating temperatures. This study presents data for the kinematic viscosity of biodiesel and its blends with No. 1 and No. 2 diesel fuels at 75, 50, and 20% biodiesel, from close to their melting point to 100°C. The results indicate that while their viscosity is higher, biodiesel and its blends demonstrate temperature-dependent behavior similar to that of No. 1 and No. 2 diesel fuels. Equations of the same general form are shown to correlate viscosity data for both biodiesel and diesel fuel, and for their blends. A blending equation is presented that allows the kinematic viscosity to be calculated as a function of the biodiesel fraction.  相似文献   

20.
Lei Zhu  C.S. Cheung  W.G. Zhang 《Fuel》2011,90(5):1743-1750
In this study, Euro V diesel fuel, biodiesel, and ethanol-biodiesel blends (BE) were tested in a 4-cylinder direct-injection diesel engine to investigate the combustion, performance and emission characteristics of the engine under five engine loads at the maximum torque engine speed of 1800 rpm. The results indicate that when compared with biodiesel, the combustion characteristics of ethanol-biodiesel blends changed; the engine performance has improved slightly with 5% ethanol in biodiesel (BE5). In comparison with Euro V diesel fuel, the biodiesel and BE blends have higher brake thermal efficiency. On the whole, compared with Euro V diesel fuel, the BE blends could lead to reduction of both NOx and particulate emissions of the diesel engine. The effectiveness of NOx and particulate reductions increases with increasing ethanol in the blends. With high percentage of ethanol in the BE blends, the HC, CO emissions could increase. But the use of BE5 could reduce the HC and CO emissions as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号